-
Notifications
You must be signed in to change notification settings - Fork 732
/
Copy pathbedrock.py
498 lines (448 loc) · 20 KB
/
bedrock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
from __future__ import annotations
import functools
import typing
from collections.abc import AsyncIterator, Iterable
from contextlib import asynccontextmanager
from dataclasses import dataclass, field
from datetime import datetime
from typing import TYPE_CHECKING, Generic, Literal, Union, cast, overload
import anyio
import anyio.to_thread
from typing_extensions import ParamSpec, assert_never
from pydantic_ai import _utils, result
from pydantic_ai.messages import (
AudioUrl,
BinaryContent,
DocumentUrl,
ImageUrl,
ModelMessage,
ModelRequest,
ModelResponse,
ModelResponsePart,
ModelResponseStreamEvent,
RetryPromptPart,
SystemPromptPart,
TextPart,
ToolCallPart,
ToolReturnPart,
UserPromptPart,
)
from pydantic_ai.models import Model, ModelRequestParameters, StreamedResponse, cached_async_http_client
from pydantic_ai.providers import Provider, infer_provider
from pydantic_ai.settings import ModelSettings
from pydantic_ai.tools import ToolDefinition
if TYPE_CHECKING:
from botocore.client import BaseClient
from botocore.eventstream import EventStream
from mypy_boto3_bedrock_runtime import BedrockRuntimeClient
from mypy_boto3_bedrock_runtime.type_defs import (
ContentBlockOutputTypeDef,
ContentBlockUnionTypeDef,
ConverseResponseTypeDef,
ConverseStreamMetadataEventTypeDef,
ConverseStreamOutputTypeDef,
ImageBlockTypeDef,
InferenceConfigurationTypeDef,
MessageUnionTypeDef,
ToolChoiceTypeDef,
ToolTypeDef,
)
LatestBedrockModelNames = Literal[
'amazon.titan-tg1-large',
'amazon.titan-text-lite-v1',
'amazon.titan-text-express-v1',
'us.amazon.nova-pro-v1:0',
'us.amazon.nova-lite-v1:0',
'us.amazon.nova-micro-v1:0',
'anthropic.claude-3-5-sonnet-20241022-v2:0',
'us.anthropic.claude-3-5-sonnet-20241022-v2:0',
'anthropic.claude-3-5-haiku-20241022-v1:0',
'us.anthropic.claude-3-5-haiku-20241022-v1:0',
'anthropic.claude-instant-v1',
'anthropic.claude-v2:1',
'anthropic.claude-v2',
'anthropic.claude-3-sonnet-20240229-v1:0',
'us.anthropic.claude-3-sonnet-20240229-v1:0',
'anthropic.claude-3-haiku-20240307-v1:0',
'us.anthropic.claude-3-haiku-20240307-v1:0',
'anthropic.claude-3-opus-20240229-v1:0',
'us.anthropic.claude-3-opus-20240229-v1:0',
'anthropic.claude-3-5-sonnet-20240620-v1:0',
'us.anthropic.claude-3-5-sonnet-20240620-v1:0',
'anthropic.claude-3-7-sonnet-20250219-v1:0',
'us.anthropic.claude-3-7-sonnet-20250219-v1:0',
'cohere.command-text-v14',
'cohere.command-r-v1:0',
'cohere.command-r-plus-v1:0',
'cohere.command-light-text-v14',
'meta.llama3-8b-instruct-v1:0',
'meta.llama3-70b-instruct-v1:0',
'meta.llama3-1-8b-instruct-v1:0',
'us.meta.llama3-1-8b-instruct-v1:0',
'meta.llama3-1-70b-instruct-v1:0',
'us.meta.llama3-1-70b-instruct-v1:0',
'meta.llama3-1-405b-instruct-v1:0',
'us.meta.llama3-2-11b-instruct-v1:0',
'us.meta.llama3-2-90b-instruct-v1:0',
'us.meta.llama3-2-1b-instruct-v1:0',
'us.meta.llama3-2-3b-instruct-v1:0',
'us.meta.llama3-3-70b-instruct-v1:0',
'mistral.mistral-7b-instruct-v0:2',
'mistral.mixtral-8x7b-instruct-v0:1',
'mistral.mistral-large-2402-v1:0',
'mistral.mistral-large-2407-v1:0',
]
"""Latest Bedrock models."""
BedrockModelName = Union[str, LatestBedrockModelNames]
"""Possible Bedrock model names.
Since Bedrock supports a variety of date-stamped models, we explicitly list the latest models but allow any name in the type hints.
See [the Bedrock docs](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html) for a full list.
"""
P = ParamSpec('P')
T = typing.TypeVar('T')
@dataclass(init=False)
class BedrockConverseModel(Model):
"""A model that uses the Bedrock Converse API."""
client: BedrockRuntimeClient
_model_name: BedrockModelName = field(repr=False)
_system: str = field(default='bedrock', repr=False)
@property
def model_name(self) -> str:
"""The model name."""
return self._model_name
@property
def system(self) -> str:
"""The system / model provider, ex: openai."""
return self._system
def __init__(
self,
model_name: BedrockModelName,
*,
provider: Literal['bedrock'] | Provider[BaseClient] = 'bedrock',
):
"""Initialize a Bedrock model.
Args:
model_name: The name of the model to use.
model_name: The name of the Bedrock model to use. List of model names available
[here](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html).
provider: The provider to use. Defaults to `'bedrock'`.
"""
self._model_name = model_name
if isinstance(provider, str):
self.client = infer_provider(provider).client
else:
self.client = cast('BedrockRuntimeClient', provider.client)
def _get_tools(self, model_request_parameters: ModelRequestParameters) -> list[ToolTypeDef]:
tools = [self._map_tool_definition(r) for r in model_request_parameters.function_tools]
if model_request_parameters.result_tools:
tools += [self._map_tool_definition(r) for r in model_request_parameters.result_tools]
return tools
@staticmethod
def _map_tool_definition(f: ToolDefinition) -> ToolTypeDef:
return {
'toolSpec': {
'name': f.name,
'description': f.description,
'inputSchema': {'json': f.parameters_json_schema},
}
}
@property
def base_url(self) -> str:
return str(self.client.meta.endpoint_url)
async def request(
self,
messages: list[ModelMessage],
model_settings: ModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> tuple[ModelResponse, result.Usage]:
response = await self._messages_create(messages, False, model_settings, model_request_parameters)
return await self._process_response(response)
@asynccontextmanager
async def request_stream(
self,
messages: list[ModelMessage],
model_settings: ModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> AsyncIterator[StreamedResponse]:
response = await self._messages_create(messages, True, model_settings, model_request_parameters)
yield BedrockStreamedResponse(_model_name=self.model_name, _event_stream=response)
async def _process_response(self, response: ConverseResponseTypeDef) -> tuple[ModelResponse, result.Usage]:
items: list[ModelResponsePart] = []
if message := response['output'].get('message'):
for item in message['content']:
if text := item.get('text'):
items.append(TextPart(content=text))
else:
tool_use = item.get('toolUse')
assert tool_use is not None, f'Found a content that is not a text or tool use: {item}'
items.append(
ToolCallPart(
tool_name=tool_use['name'],
args=tool_use['input'],
tool_call_id=tool_use['toolUseId'],
),
)
usage = result.Usage(
request_tokens=response['usage']['inputTokens'],
response_tokens=response['usage']['outputTokens'],
total_tokens=response['usage']['totalTokens'],
)
return ModelResponse(items, model_name=self.model_name), usage
@overload
async def _messages_create(
self,
messages: list[ModelMessage],
stream: Literal[True],
model_settings: ModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> EventStream[ConverseStreamOutputTypeDef]:
pass
@overload
async def _messages_create(
self,
messages: list[ModelMessage],
stream: Literal[False],
model_settings: ModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> ConverseResponseTypeDef:
pass
async def _messages_create(
self,
messages: list[ModelMessage],
stream: bool,
model_settings: ModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> ConverseResponseTypeDef | EventStream[ConverseStreamOutputTypeDef]:
tools = self._get_tools(model_request_parameters)
support_tools_choice = self.model_name.startswith(('anthropic', 'us.anthropic'))
if not tools or not support_tools_choice:
tool_choice: ToolChoiceTypeDef = {}
elif not model_request_parameters.allow_text_result:
tool_choice = {'any': {}}
else:
tool_choice = {'auto': {}}
system_prompt, bedrock_messages = await self._map_message(messages)
inference_config = self._map_inference_config(model_settings)
params = {
'modelId': self.model_name,
'messages': bedrock_messages,
'system': [{'text': system_prompt}],
'inferenceConfig': inference_config,
**(
{'toolConfig': {'tools': tools, **({'toolChoice': tool_choice} if tool_choice else {})}}
if tools
else {}
),
}
if stream:
model_response = await anyio.to_thread.run_sync(functools.partial(self.client.converse_stream, **params))
model_response = model_response['stream']
else:
model_response = await anyio.to_thread.run_sync(functools.partial(self.client.converse, **params))
return model_response
@staticmethod
def _map_inference_config(
model_settings: ModelSettings | None,
) -> InferenceConfigurationTypeDef:
model_settings = model_settings or {}
inference_config: InferenceConfigurationTypeDef = {}
if max_tokens := model_settings.get('max_tokens'):
inference_config['maxTokens'] = max_tokens
if temperature := model_settings.get('temperature'):
inference_config['temperature'] = temperature
if top_p := model_settings.get('top_p'):
inference_config['topP'] = top_p
# TODO(Marcelo): This is not included in model_settings yet.
# if stop_sequences := model_settings.get('stop_sequences'):
# inference_config['stopSequences'] = stop_sequences
return inference_config
async def _map_message(self, messages: list[ModelMessage]) -> tuple[str, list[MessageUnionTypeDef]]:
"""Just maps a `pydantic_ai.Message` to the Bedrock `MessageUnionTypeDef`."""
system_prompt: str = ''
bedrock_messages: list[MessageUnionTypeDef] = []
for m in messages:
if isinstance(m, ModelRequest):
for part in m.parts:
if isinstance(part, SystemPromptPart):
system_prompt += part.content
elif isinstance(part, UserPromptPart):
bedrock_messages.extend(await self._map_user_prompt(part))
elif isinstance(part, ToolReturnPart):
assert part.tool_call_id is not None
bedrock_messages.append(
{
'role': 'user',
'content': [
{
'toolResult': {
'toolUseId': part.tool_call_id,
'content': [{'text': part.model_response_str()}],
'status': 'success',
}
}
],
}
)
elif isinstance(part, RetryPromptPart):
# TODO(Marcelo): We need to add a test here.
if part.tool_name is None: # pragma: no cover
bedrock_messages.append({'role': 'user', 'content': [{'text': part.model_response()}]})
else:
assert part.tool_call_id is not None
bedrock_messages.append(
{
'role': 'user',
'content': [
{
'toolResult': {
'toolUseId': part.tool_call_id,
'content': [{'text': part.model_response()}],
'status': 'error',
}
}
],
}
)
elif isinstance(m, ModelResponse):
content: list[ContentBlockOutputTypeDef] = []
for item in m.parts:
if isinstance(item, TextPart):
content.append({'text': item.content})
else:
assert isinstance(item, ToolCallPart)
content.append(self._map_tool_call(item)) # FIXME: MISSING key
bedrock_messages.append({'role': 'assistant', 'content': content})
else:
assert_never(m)
return system_prompt, bedrock_messages
@staticmethod
async def _map_user_prompt(part: UserPromptPart) -> list[MessageUnionTypeDef]:
content: list[ContentBlockUnionTypeDef] = []
if isinstance(part.content, str):
content.append({'text': part.content})
else:
document_count = 0
for item in part.content:
if isinstance(item, str):
content.append({'text': item})
elif isinstance(item, BinaryContent):
format = item.format
if item.is_document:
document_count += 1
name = f'Document {document_count}'
assert format in ('pdf', 'txt', 'csv', 'doc', 'docx', 'xls', 'xlsx', 'html', 'md')
content.append({'document': {'name': name, 'format': format, 'source': {'bytes': item.data}}})
elif item.is_image:
assert format in ('jpeg', 'png', 'gif', 'webp')
content.append({'image': {'format': format, 'source': {'bytes': item.data}}})
else:
raise NotImplementedError('Binary content is not supported yet.')
elif isinstance(item, (ImageUrl, DocumentUrl)):
response = await cached_async_http_client().get(item.url)
response.raise_for_status()
if item.kind == 'image-url':
format = item.media_type.split('/')[1]
assert format in ('jpeg', 'png', 'gif', 'webp'), f'Unsupported image format: {format}'
image: ImageBlockTypeDef = {'format': format, 'source': {'bytes': response.content}}
content.append({'image': image})
elif item.kind == 'document-url':
document_count += 1
name = f'Document {document_count}'
data = response.content
content.append({'document': {'name': name, 'format': item.format, 'source': {'bytes': data}}})
elif isinstance(item, AudioUrl): # pragma: no cover
raise NotImplementedError('Audio is not supported yet.')
else:
assert_never(item)
return [{'role': 'user', 'content': content}]
@staticmethod
def _map_tool_call(t: ToolCallPart) -> ContentBlockOutputTypeDef:
return {
'toolUse': {
'toolUseId': _utils.guard_tool_call_id(t=t),
'name': t.tool_name,
'input': t.args_as_dict(),
}
}
@dataclass
class BedrockStreamedResponse(StreamedResponse):
"""Implementation of `StreamedResponse` for Bedrock models."""
_model_name: BedrockModelName
_event_stream: EventStream[ConverseStreamOutputTypeDef]
_timestamp: datetime = field(default_factory=_utils.now_utc)
async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
"""Return an async iterator of [`ModelResponseStreamEvent`][pydantic_ai.messages.ModelResponseStreamEvent]s.
This method should be implemented by subclasses to translate the vendor-specific stream of events into
pydantic_ai-format events.
"""
chunk: ConverseStreamOutputTypeDef
tool_id: str | None = None
async for chunk in _AsyncIteratorWrapper(self._event_stream):
# TODO(Marcelo): Switch this to `match` when we drop Python 3.9 support.
if 'messageStart' in chunk:
continue
if 'messageStop' in chunk:
continue
if 'metadata' in chunk:
if 'usage' in chunk['metadata']:
self._usage += self._map_usage(chunk['metadata'])
continue
if 'contentBlockStart' in chunk:
index = chunk['contentBlockStart']['contentBlockIndex']
start = chunk['contentBlockStart']['start']
if 'toolUse' in start:
tool_use_start = start['toolUse']
tool_id = tool_use_start['toolUseId']
tool_name = tool_use_start['name']
maybe_event = self._parts_manager.handle_tool_call_delta(
vendor_part_id=index,
tool_name=tool_name,
args=None,
tool_call_id=tool_id,
)
if maybe_event:
yield maybe_event
if 'contentBlockDelta' in chunk:
index = chunk['contentBlockDelta']['contentBlockIndex']
delta = chunk['contentBlockDelta']['delta']
if 'text' in delta:
yield self._parts_manager.handle_text_delta(vendor_part_id=index, content=delta['text'])
if 'toolUse' in delta:
tool_use = delta['toolUse']
maybe_event = self._parts_manager.handle_tool_call_delta(
vendor_part_id=index,
tool_name=tool_use.get('name'),
args=tool_use.get('input'),
tool_call_id=tool_id,
)
if maybe_event:
yield maybe_event
@property
def timestamp(self) -> datetime:
return self._timestamp
@property
def model_name(self) -> str:
"""Get the model name of the response."""
return self._model_name
def _map_usage(self, metadata: ConverseStreamMetadataEventTypeDef) -> result.Usage:
return result.Usage(
request_tokens=metadata['usage']['inputTokens'],
response_tokens=metadata['usage']['outputTokens'],
total_tokens=metadata['usage']['totalTokens'],
)
class _AsyncIteratorWrapper(Generic[T]):
"""Wrap a synchronous iterator in an async iterator."""
def __init__(self, sync_iterator: Iterable[T]):
self.sync_iterator = iter(sync_iterator)
def __aiter__(self):
return self
async def __anext__(self) -> T:
try:
# Run the synchronous next() call in a thread pool
item = await anyio.to_thread.run_sync(next, self.sync_iterator)
return item
except RuntimeError as e:
if type(e.__cause__) is StopIteration:
raise StopAsyncIteration
else:
raise e