-
Notifications
You must be signed in to change notification settings - Fork 24
/
NW.h
435 lines (375 loc) · 10.7 KB
/
NW.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/* Partial implementation of Needleman-Wunsch (NW) dynamic programming for
* global alignment. The three NWDP_TM functions below are not complete
* implementation of NW algorithm because gap jumping in the standard Gotoh
* algorithm is not considered. Since the gap opening and gap extension is
* the same, this is not a problem. This code was exploited in TM-align
* because it is about 1.5 times faster than a complete NW implementation.
* Nevertheless, if gap opening != gap extension shall be implemented in
* the future, the Gotoh algorithm must be implemented. In rare scenarios,
* it is also possible to have asymmetric alignment (i.e.
* TMalign A.pdb B.pdb and TMalign B.pdb A.pdb have different TM_A and TM_B
* values) caused by the NWPD_TM implement.
*/
/* Input: score[1:len1, 1:len2], and gap_open
* Output: j2i[1:len2] \in {1:len1} U {-1}
* path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */
void NWDP_TM(double **score, bool **path, double **val,
int len1, int len2, double gap_open, int j2i[])
{
int i, j;
double h, v, d;
//initialization
for(i=0; i<=len1; i++)
{
val[i][0]=0;
//val[i][0]=i*gap_open;
path[i][0]=false; //not from diagonal
}
for(j=0; j<=len2; j++)
{
val[0][j]=0;
//val[0][j]=j*gap_open;
path[0][j]=false; //not from diagonal
j2i[j]=-1; //all are not aligned, only use j2i[1:len2]
}
//decide matrix and path
for(i=1; i<=len1; i++)
{
for(j=1; j<=len2; j++)
{
d=val[i-1][j-1]+score[i][j]; //diagonal
//symbol insertion in horizontal (= a gap in vertical)
h=val[i-1][j];
if(path[i-1][j]) h += gap_open; //aligned in last position
//symbol insertion in vertical
v=val[i][j-1];
if(path[i][j-1]) v += gap_open; //aligned in last position
if(d>=h && d>=v)
{
path[i][j]=true; //from diagonal
val[i][j]=d;
}
else
{
path[i][j]=false; //from horizontal
if(v>=h) val[i][j]=v;
else val[i][j]=h;
}
} //for i
} //for j
//trace back to extract the alignment
i=len1;
j=len2;
while(i>0 && j>0)
{
if(path[i][j]) //from diagonal
{
j2i[j-1]=i-1;
i--;
j--;
}
else
{
h=val[i-1][j];
if(path[i-1][j]) h +=gap_open;
v=val[i][j-1];
if(path[i][j-1]) v +=gap_open;
if(v>=h) j--;
else i--;
}
}
}
/* Input: vectors x, y, rotation matrix t, u, scale factor d02, and gap_open
* Output: j2i[1:len2] \in {1:len1} U {-1}
* path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */
void NWDP_TM(bool **path, double **val, double **x, double **y,
int len1, int len2, double t[3], double u[3][3],
double d02, double gap_open, int j2i[])
{
int i, j;
double h, v, d;
//initialization. use old val[i][0] and val[0][j] initialization
//to minimize difference from TMalign fortran version
for(i=0; i<=len1; i++)
{
val[i][0]=0;
//val[i][0]=i*gap_open;
path[i][0]=false; //not from diagonal
}
for(j=0; j<=len2; j++)
{
val[0][j]=0;
//val[0][j]=j*gap_open;
path[0][j]=false; //not from diagonal
j2i[j]=-1; //all are not aligned, only use j2i[1:len2]
}
double xx[3], dij;
//decide matrix and path
for(i=1; i<=len1; i++)
{
transform(t, u, &x[i-1][0], xx);
for(j=1; j<=len2; j++)
{
dij=dist(xx, &y[j-1][0]);
d=val[i-1][j-1] + 1.0/(1+dij/d02);
//symbol insertion in horizontal (= a gap in vertical)
h=val[i-1][j];
if(path[i-1][j]) h += gap_open; //aligned in last position
//symbol insertion in vertical
v=val[i][j-1];
if(path[i][j-1]) v += gap_open; //aligned in last position
if(d>=h && d>=v)
{
path[i][j]=true; //from diagonal
val[i][j]=d;
}
else
{
path[i][j]=false; //from horizontal
if(v>=h) val[i][j]=v;
else val[i][j]=h;
}
} //for i
} //for j
//trace back to extract the alignment
i=len1;
j=len2;
while(i>0 && j>0)
{
if(path[i][j]) //from diagonal
{
j2i[j-1]=i-1;
i--;
j--;
}
else
{
h=val[i-1][j];
if(path[i-1][j]) h +=gap_open;
v=val[i][j-1];
if(path[i][j-1]) v +=gap_open;
if(v>=h) j--;
else i--;
}
}
}
/* This is the same as the previous NWDP_TM, except for the lack of rotation
* Input: vectors x, y, scale factor d02, and gap_open
* Output: j2i[1:len2] \in {1:len1} U {-1}
* path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */
void NWDP_SE(bool **path, double **val, double **x, double **y,
int len1, int len2, double d02, double gap_open, int j2i[])
{
int i, j;
double h, v, d;
for(i=0; i<=len1; i++)
{
val[i][0]=0;
path[i][0]=false; //not from diagonal
}
for(j=0; j<=len2; j++)
{
val[0][j]=0;
path[0][j]=false; //not from diagonal
j2i[j]=-1; //all are not aligned, only use j2i[1:len2]
}
double dij;
//decide matrix and path
for(i=1; i<=len1; i++)
{
for(j=1; j<=len2; j++)
{
dij=dist(&x[i-1][0], &y[j-1][0]);
d=val[i-1][j-1] + 1.0/(1+dij/d02);
//symbol insertion in horizontal (= a gap in vertical)
h=val[i-1][j];
if(path[i-1][j]) h += gap_open; //aligned in last position
//symbol insertion in vertical
v=val[i][j-1];
if(path[i][j-1]) v += gap_open; //aligned in last position
if(d>=h && d>=v)
{
path[i][j]=true; //from diagonal
val[i][j]=d;
}
else
{
path[i][j]=false; //from horizontal
if(v>=h) val[i][j]=v;
else val[i][j]=h;
}
} //for i
} //for j
//trace back to extract the alignment
i=len1;
j=len2;
while(i>0 && j>0)
{
if(path[i][j]) //from diagonal
{
j2i[j-1]=i-1;
i--;
j--;
}
else
{
h=val[i-1][j];
if(path[i-1][j]) h +=gap_open;
v=val[i][j-1];
if(path[i][j-1]) v +=gap_open;
if(v>=h) j--;
else i--;
}
}
}
void NWDP_SE(bool **path, double **val, double **x, double **y,
int len1, int len2, double d02, double gap_open, int j2i[],
const int hinge)
{
if (hinge==0)
{
NWDP_SE(path, val, x, y, len1, len2, d02, gap_open, j2i);
return;
}
int i, j;
double h, v, d;
int L=(len2>len1)?len2:len1;
int int_min=L*(gap_open-1);
for (i=0; i<=len1; i++)
{
for (j=0; j<=len2; j++)
{
val[i][j]=0;
path[i][j]=false;
}
}
/* fill in old j2i */
int k=0;
for (j=0; j<len2; j++)
{
i=j2i[j];
if (i<0) continue;
path[i+1][j+1]=true;
val[i+1][j+1]=0;
}
double dij;
//decide matrix and path
for(i=1; i<=len1; i++)
{
for(j=1; j<=len2; j++)
{
dij=0;
if (path[i][j]==false) dij=dist(&x[i-1][0], &y[j-1][0]);
d=val[i-1][j-1] + 1.0/(1+dij/d02);
//symbol insertion in horizontal (= a gap in vertical)
h=val[i-1][j];
if(path[i-1][j]) h += gap_open; //aligned in last position
//symbol insertion in vertical
v=val[i][j-1];
if(path[i][j-1]) v += gap_open; //aligned in last position
if(d>=h && d>=v && val[i][j]==0)
{
path[i][j]=true; //from diagonal
val[i][j]=d;
}
else
{
path[i][j]=false; //from horizontal
if(v>=h) val[i][j]=v;
else val[i][j]=h;
}
} //for i
} //for j
//trace back to extract the alignment
for (j=0;j<=len2;j++) j2i[j]=-1;
i=len1;
j=len2;
while(i>0 && j>0)
{
if(path[i][j]) //from diagonal
{
j2i[j-1]=i-1;
i--;
j--;
}
else
{
h=val[i-1][j];
if(path[i-1][j]) h +=gap_open;
v=val[i][j-1];
if(path[i][j-1]) v +=gap_open;
if(v>=h) j--;
else i--;
}
}
}
/* +ss
* Input: secondary structure secx, secy, and gap_open
* Output: j2i[1:len2] \in {1:len1} U {-1}
* path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */
void NWDP_TM(bool **path, double **val, const char *secx, const char *secy,
const int len1, const int len2, const double gap_open, int j2i[])
{
int i, j;
double h, v, d;
//initialization
for(i=0; i<=len1; i++)
{
val[i][0]=0;
//val[i][0]=i*gap_open;
path[i][0]=false; //not from diagonal
}
for(j=0; j<=len2; j++)
{
val[0][j]=0;
//val[0][j]=j*gap_open;
path[0][j]=false; //not from diagonal
j2i[j]=-1; //all are not aligned, only use j2i[1:len2]
}
//decide matrix and path
for(i=1; i<=len1; i++)
{
for(j=1; j<=len2; j++)
{
d=val[i-1][j-1] + 1.0*(secx[i-1]==secy[j-1]);
//symbol insertion in horizontal (= a gap in vertical)
h=val[i-1][j];
if(path[i-1][j]) h += gap_open; //aligned in last position
//symbol insertion in vertical
v=val[i][j-1];
if(path[i][j-1]) v += gap_open; //aligned in last position
if(d>=h && d>=v)
{
path[i][j]=true; //from diagonal
val[i][j]=d;
}
else
{
path[i][j]=false; //from horizontal
if(v>=h) val[i][j]=v;
else val[i][j]=h;
}
} //for i
} //for j
//trace back to extract the alignment
i=len1;
j=len2;
while(i>0 && j>0)
{
if(path[i][j]) //from diagonal
{
j2i[j-1]=i-1;
i--;
j--;
}
else
{
h=val[i-1][j];
if(path[i-1][j]) h +=gap_open;
v=val[i][j-1];
if(path[i][j-1]) v +=gap_open;
if(v>=h) j--;
else i--;
}
}
}