-
Notifications
You must be signed in to change notification settings - Fork 20
/
model.py
450 lines (376 loc) · 15.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Copyright Contributors to the Pyro project.
# SPDX-License-Identifier: Apache-2.0
from collections import OrderedDict
import pyro
import torch
from torch.distributions import constraints
import funsor.ops as ops
import funsor.torch.distributions as dist
from funsor.domains import Bint, Reals
from funsor.tensor import Tensor
from funsor.terms import Stack, Variable, to_funsor
class Guide(object):
"""generic mean-field guide for continuous random effects"""
def __init__(self, config):
self.config = config
self.params = self.initialize_params()
def initialize_params(self):
# dictionary of guide random effect parameters
params = {"eps_g": {}, "eps_i": {}}
N_state = self.config["sizes"]["state"]
# initialize group-level parameters
if self.config["group"]["random"] == "continuous":
params["eps_g"]["loc"] = Tensor(
pyro.param("loc_group", lambda: torch.zeros((N_state, N_state))),
OrderedDict([("y_prev", Bint[N_state])]),
)
params["eps_g"]["scale"] = Tensor(
pyro.param(
"scale_group",
lambda: torch.ones((N_state, N_state)),
constraint=constraints.positive,
),
OrderedDict([("y_prev", Bint[N_state])]),
)
# initialize individual-level random effect parameters
N_c = self.config["sizes"]["group"]
if self.config["individual"]["random"] == "continuous":
params["eps_i"]["loc"] = Tensor(
pyro.param(
"loc_individual", lambda: torch.zeros((N_c, N_state, N_state))
),
OrderedDict([("g", Bint[N_c]), ("y_prev", Bint[N_state])]),
)
params["eps_i"]["scale"] = Tensor(
pyro.param(
"scale_individual",
lambda: torch.ones((N_c, N_state, N_state)),
constraint=constraints.positive,
),
OrderedDict([("g", Bint[N_c]), ("y_prev", Bint[N_state])]),
)
self.params = params
return self.params
def __call__(self):
# calls pyro.param so that params are exposed and constraints applied
# should not create any new torch.Tensors after __init__
self.initialize_params()
N_c = self.config["sizes"]["group"]
N_s = self.config["sizes"]["individual"]
log_prob = Tensor(torch.tensor(0.0), OrderedDict())
plate_g = Tensor(torch.zeros(N_c), OrderedDict([("g", Bint[N_c])]))
plate_i = Tensor(torch.zeros(N_s), OrderedDict([("i", Bint[N_s])]))
if self.config["group"]["random"] == "continuous":
eps_g_dist = plate_g + dist.Normal(**self.params["eps_g"])(value="eps_g")
log_prob += eps_g_dist
# individual-level random effects
if self.config["individual"]["random"] == "continuous":
eps_i_dist = (
plate_g + plate_i + dist.Normal(**self.params["eps_i"])(value="eps_i")
)
log_prob += eps_i_dist
return log_prob
class Model(object):
def __init__(self, config):
self.config = config
self.params = self.initialize_params()
self.raggedness_masks = self.initialize_raggedness_masks()
self.observations = self.initialize_observations()
def initialize_params(self):
# return a dict of per-site params as funsor.tensor.Tensors
params = {
"e_g": {},
"theta_g": {},
"eps_g": {},
"e_i": {},
"theta_i": {},
"eps_i": {},
"zi_step": {},
"step": {},
"angle": {},
"zi_omega": {},
"omega": {},
}
# size parameters
N_v = self.config["sizes"]["random"]
N_state = self.config["sizes"]["state"]
# initialize group-level random effect parameters
if self.config["group"]["random"] == "discrete":
params["e_g"]["probs"] = Tensor(
pyro.param(
"probs_e_g",
lambda: torch.randn((N_v,)).abs(),
constraint=constraints.simplex,
),
OrderedDict(),
)
params["eps_g"]["theta"] = Tensor(
pyro.param("theta_g", lambda: torch.randn((N_v, N_state, N_state))),
OrderedDict([("e_g", Bint[N_v]), ("y_prev", Bint[N_state])]),
)
elif self.config["group"]["random"] == "continuous":
# note these are prior values, trainable versions live in guide
params["eps_g"]["loc"] = Tensor(
torch.zeros((N_state, N_state)),
OrderedDict([("y_prev", Bint[N_state])]),
)
params["eps_g"]["scale"] = Tensor(
torch.ones((N_state, N_state)), OrderedDict([("y_prev", Bint[N_state])])
)
# initialize individual-level random effect parameters
N_c = self.config["sizes"]["group"]
if self.config["individual"]["random"] == "discrete":
params["e_i"]["probs"] = Tensor(
pyro.param(
"probs_e_i",
lambda: torch.randn((N_c, N_v)).abs(),
constraint=constraints.simplex,
),
OrderedDict([("g", Bint[N_c])]), # different value per group
)
params["eps_i"]["theta"] = Tensor(
pyro.param(
"theta_i", lambda: torch.randn((N_c, N_v, N_state, N_state))
),
OrderedDict(
[("g", Bint[N_c]), ("e_i", Bint[N_v]), ("y_prev", Bint[N_state])]
),
)
elif self.config["individual"]["random"] == "continuous":
params["eps_i"]["loc"] = Tensor(
torch.zeros((N_c, N_state, N_state)),
OrderedDict([("g", Bint[N_c]), ("y_prev", Bint[N_state])]),
)
params["eps_i"]["scale"] = Tensor(
torch.ones((N_c, N_state, N_state)),
OrderedDict([("g", Bint[N_c]), ("y_prev", Bint[N_state])]),
)
# initialize likelihood parameters
# observation 1: step size (step ~ Gamma)
params["zi_step"]["zi_param"] = Tensor(
pyro.param(
"step_zi_param",
lambda: torch.ones((N_state, 2)),
constraint=constraints.simplex,
),
OrderedDict([("y_curr", Bint[N_state])]),
)
params["step"]["concentration"] = Tensor(
pyro.param(
"step_param_concentration",
lambda: torch.randn((N_state,)).abs(),
constraint=constraints.positive,
),
OrderedDict([("y_curr", Bint[N_state])]),
)
params["step"]["rate"] = Tensor(
pyro.param(
"step_param_rate",
lambda: torch.randn((N_state,)).abs(),
constraint=constraints.positive,
),
OrderedDict([("y_curr", Bint[N_state])]),
)
# observation 2: step angle (angle ~ VonMises)
params["angle"]["concentration"] = Tensor(
pyro.param(
"angle_param_concentration",
lambda: torch.randn((N_state,)).abs(),
constraint=constraints.positive,
),
OrderedDict([("y_curr", Bint[N_state])]),
)
params["angle"]["loc"] = Tensor(
pyro.param("angle_param_loc", lambda: torch.randn((N_state,)).abs()),
OrderedDict([("y_curr", Bint[N_state])]),
)
# observation 3: dive activity (omega ~ Beta)
params["zi_omega"]["zi_param"] = Tensor(
pyro.param(
"omega_zi_param",
lambda: torch.ones((N_state, 2)),
constraint=constraints.simplex,
),
OrderedDict([("y_curr", Bint[N_state])]),
)
params["omega"]["concentration0"] = Tensor(
pyro.param(
"omega_param_concentration0",
lambda: torch.randn((N_state,)).abs(),
constraint=constraints.positive,
),
OrderedDict([("y_curr", Bint[N_state])]),
)
params["omega"]["concentration1"] = Tensor(
pyro.param(
"omega_param_concentration1",
lambda: torch.randn((N_state,)).abs(),
constraint=constraints.positive,
),
OrderedDict([("y_curr", Bint[N_state])]),
)
self.params = params
return self.params
def initialize_observations(self):
"""
Convert raw observation tensors into funsor.tensor.Tensors
"""
batch_inputs = OrderedDict(
[
("i", Bint[self.config["sizes"]["individual"]]),
("g", Bint[self.config["sizes"]["group"]]),
("t", Bint[self.config["sizes"]["timesteps"]]),
]
)
observations = {}
for name, data in self.config["observations"].items():
observations[name] = Tensor(
data[..., : self.config["sizes"]["timesteps"]], batch_inputs
)
self.observations = observations
return self.observations
def initialize_raggedness_masks(self):
"""
Convert raw raggedness tensors into funsor.tensor.Tensors
"""
batch_inputs = OrderedDict(
[
("i", Bint[self.config["sizes"]["individual"]]),
("g", Bint[self.config["sizes"]["group"]]),
("t", Bint[self.config["sizes"]["timesteps"]]),
]
)
raggedness_masks = {}
for name in ("individual", "timestep"):
data = self.config[name]["mask"]
if len(data.shape) < len(batch_inputs):
while len(data.shape) < len(batch_inputs):
data = data.unsqueeze(-1)
data = data.expand(tuple(v.dtype for v in batch_inputs.values()))
data = data.to(self.config["observations"]["step"].dtype)
raggedness_masks[name] = Tensor(
data[..., : self.config["sizes"]["timesteps"]], batch_inputs
)
self.raggedness_masks = raggedness_masks
return self.raggedness_masks
def __call__(self):
# calls pyro.param so that params are exposed and constraints applied
# should not create any new torch.Tensors after __init__
self.initialize_params()
N_state = self.config["sizes"]["state"]
# initialize gamma to uniform
gamma = Tensor(
torch.zeros((N_state, N_state)), OrderedDict([("y_prev", Bint[N_state])])
)
N_v = self.config["sizes"]["random"]
N_c = self.config["sizes"]["group"]
log_prob = []
plate_g = Tensor(torch.zeros(N_c), OrderedDict([("g", Bint[N_c])]))
# group-level random effects
if self.config["group"]["random"] == "discrete":
# group-level discrete effect
e_g = Variable("e_g", Bint[N_v])
e_g_dist = plate_g + dist.Categorical(**self.params["e_g"])(value=e_g)
log_prob.append(e_g_dist)
eps_g = (plate_g + self.params["eps_g"]["theta"])(e_g=e_g)
elif self.config["group"]["random"] == "continuous":
eps_g = Variable("eps_g", Reals[N_state])
eps_g_dist = plate_g + dist.Normal(**self.params["eps_g"])(value=eps_g)
log_prob.append(eps_g_dist)
else:
eps_g = to_funsor(0.0)
N_s = self.config["sizes"]["individual"]
plate_i = Tensor(torch.zeros(N_s), OrderedDict([("i", Bint[N_s])]))
# individual-level random effects
if self.config["individual"]["random"] == "discrete":
# individual-level discrete effect
e_i = Variable("e_i", Bint[N_v])
e_i_dist = (
plate_g
+ plate_i
+ dist.Categorical(**self.params["e_i"])(value=e_i)
* self.raggedness_masks["individual"](t=0)
)
log_prob.append(e_i_dist)
eps_i = plate_i + plate_g + self.params["eps_i"]["theta"](e_i=e_i)
elif self.config["individual"]["random"] == "continuous":
eps_i = Variable("eps_i", Reals[N_state])
eps_i_dist = (
plate_g + plate_i + dist.Normal(**self.params["eps_i"])(value=eps_i)
)
log_prob.append(eps_i_dist)
else:
eps_i = to_funsor(0.0)
# add group-level and individual-level random effects to gamma
gamma = gamma + eps_g + eps_i
N_state = self.config["sizes"]["state"]
# we've accounted for all effects, now actually compute gamma_y
gamma_y = gamma(y_prev="y(t=1)")
y = Variable("y", Bint[N_state])
y_dist = (
plate_g
+ plate_i
+ dist.Categorical(probs=gamma_y.exp() / gamma_y.exp().sum())(value=y)
)
# observation 1: step size
step_dist = (
plate_g
+ plate_i
+ dist.Gamma(**{k: v(y_curr=y) for k, v in self.params["step"].items()})(
value=self.observations["step"]
)
)
# step size zero-inflation
if self.config["zeroinflation"]:
step_zi = dist.Categorical(
probs=self.params["zi_step"]["zi_param"](y_curr=y)
)(value="zi_step")
step_zi_dist = (
plate_g
+ plate_i
+ dist.Delta(self.config["MISSING"], 0.0)(
value=self.observations["step"]
)
)
step_dist = (step_zi + Stack("zi_step", (step_dist, step_zi_dist))).reduce(
ops.logaddexp, "zi_step"
)
# observation 2: step angle
angle_dist = (
plate_g
+ plate_i
+ dist.VonMises(
**{k: v(y_curr=y) for k, v in self.params["angle"].items()}
)(value=self.observations["angle"])
)
# observation 3: dive activity
omega_dist = (
plate_g
+ plate_i
+ dist.Beta(**{k: v(y_curr=y) for k, v in self.params["omega"].items()})(
value=self.observations["omega"]
)
)
# dive activity zero-inflation
if self.config["zeroinflation"]:
omega_zi = dist.Categorical(
probs=self.params["zi_omega"]["zi_param"](y_curr=y)
)(value="zi_omega")
omega_zi_dist = (
plate_g
+ plate_i
+ dist.Delta(self.config["MISSING"], 0.0)(
value=self.observations["omega"]
)
)
omega_dist = (
omega_zi + Stack("zi_omega", (omega_dist, omega_zi_dist))
).reduce(ops.logaddexp, "zi_omega")
# finally, construct the term for parallel scan reduction
hmm_factor = step_dist + angle_dist + omega_dist
hmm_factor = hmm_factor * self.raggedness_masks["individual"]
hmm_factor = hmm_factor * self.raggedness_masks["timestep"]
# copy masking behavior of pyro.infer.TraceEnum_ELBO._compute_model_factors
hmm_factor = hmm_factor + y_dist
log_prob.insert(0, hmm_factor)
return log_prob