-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathplot_traces.py
194 lines (158 loc) · 6.7 KB
/
plot_traces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as num
from pyrocko.gui.snuffling import Snuffling, Param, Choice, Switch
from pyrocko import orthodrome as ortho
from pyrocko import util
def station_key(tr):
return (tr.network, tr.station, tr.location)
class TracePlotter(Snuffling):
'''
<html>
<body>
<head>
<style type="text/css">
body { margin-left:10px };
</style>
</head>
<body>
<h1 align="center">Plot Traces with Reduced Velocity</h1>
<p>
Use the <b>Reduction Velocity</b> to shift traces dependent on epicentral
distance to the activated event.
If <b>Auto-Run</b> is activated the figure is updated automatically when
modifying a value on the panel.<br>
When <b>saving a figure</b> accepted file endings are 'eps', 'png', 'jpeg',
'pdf', and 'svg'.
</body>
</html>
'''
def setup(self):
self.set_name("Plot Waveforms")
self.add_parameter(
Switch('Include Selected Markers', 'add_markers', False))
self.add_parameter(Switch('Fill positive', 'fill_between', False))
self.add_parameter(
Param(
'Reduction Velocity [km/s]',
't_red', 20., 1., 20., high_is_none=True))
self.add_parameter(Param(
'Amplitude Gain', 'yscale', 1., 0.1, 100.))
self.add_parameter(Choice(
'Pre-scale Amplitudes', 'ampl_scaler', 'trace min/max',
['total min/max', 'trace min/max', 'standard deviation']))
self.add_trigger('Save Last Figure', self.save)
self.set_live_update(False)
self.fig = None
def call(self):
self.cleanup()
viewer = self.get_viewer()
vtmin, vtmax = viewer.get_time_range()
pile = self.get_pile()
traces = [
tr for tr in pile.chopper(
tmin=vtmin, tmax=vtmax, trace_selector=viewer.trace_selector)]
event, stations = self.get_active_event_and_stations()
traces = [tr for trs in traces for tr in trs]
trace_nsls = {station_key(tr) for tr in traces}
stations = [s for s in self.get_stations() if
s.nsl() in trace_nsls]
distances = [
ortho.distance_accurate50m(event, s)/1000. for s in stations]
distances = dict(zip([s.nsl() for s in stations], distances))
matching_traces = [x for x in traces if util.match_nslc(
self.get_station_patterns(stations), x.nslc_id)]
if self.add_markers:
markers = self.get_markers()
markers = [
m for m in markers if m.tmax <= vtmax and
m.tmin >= vtmin and m.selected]
markers = dict(zip([tuple(m.nslc_ids) for m in markers], markers))
if self.fig is None or self.fframe.closed or not self._live_update:
self.fframe = self.pylab(get='figure_frame')
self.fig = self.fframe.gcf()
if self._live_update:
self.fig.clf()
maxd = max(distances.values())
mind = min(distances.values())
ymin = mind-0.06*(maxd-mind)
ymax = maxd+0.06*(maxd-mind)
ax = self.fig.add_subplot(111)
xmin = 9E9
xmax = -xmin
texts = []
manual_scale = 0.1 * (maxd-mind)*self.yscale
if self.ampl_scaler == 'total min/max':
max_trace = max(
matching_traces, key=lambda x: max(abs(x.get_ydata())))
tr_maxy = max(abs(max_trace.get_ydata()))
ampl_scale = float(tr_maxy)
for tr in matching_traces:
if viewer.highpass:
tr.highpass(4, viewer.highpass)
if viewer.lowpass:
tr.lowpass(4, viewer.lowpass)
if tr.nslc_id[:3] not in distances.keys():
continue
if self.t_red:
red = distances[tr.nslc_id[:3]]/self.t_red
else:
red = 0.
y_pos = distances[tr.nslc_id[:3]]
xdata = tr.get_xdata()-red-event.time
xmin = min(xmin, min(xdata))
xmax = max(xmax, max(xdata))
tr_ydata = tr.get_ydata()
if self.ampl_scaler == 'trace min/max':
ampl_scale = float(max(abs(tr_ydata)))
elif self.ampl_scaler == 'standard deviation':
ampl_scale = float(num.std(tr_ydata))
ydata = (tr_ydata/ampl_scale * manual_scale) + y_pos
ax.plot(xdata, ydata, c='black', linewidth=0.2)
if self.fill_between:
ax.fill_between(
xdata, y_pos, ydata, where=ydata > y_pos, color='black',
alpha=0.5)
texts.append(
ax.text(
xmax, y_pos, '%s.%s.%s.%s' % tr.nslc_id,
horizontalalignment='right', fontsize=6.))
if self.add_markers:
for ids, m in markers.items():
if m.match_nslc(tr.nslc_id) or ids == ():
c = m.select_color(m.color_b)
c = [ci/255. for ci in c]
t = m.tmin
x = [t-red-event.time, t-red-event.time]
y = [y_pos-(maxd-mind)*0.025, y_pos+(maxd-mind)*0.025]
ax.plot(x, y, linewidth=1, color=c)
label = m.get_label()
if not label:
label = ''
ax.text(x[1]-x[1]*0.005, y[1], label, color=c,
fontsize=6,
verticalalignment='top',
horizontalalignment='right')
for txt in texts:
txt.set_x(xmax)
vred_str = '= '+str(round(self.t_red, 2)) + 'km/s' if self.t_red \
else 'off'
ax.text(0.5, 0.01, 'time window: %s - %s | Reduction velocity %s' %
(util.tts(vtmin), util.tts(vtmax), vred_str),
verticalalignment='bottom', horizontalalignment='center',
transform=self.fig.transFigure)
ax.set_ylim([ymin, ymax])
ax.set_xlim([xmin, xmax])
ax.set_ylabel('Distance [km]')
ax.set_xlabel('(red.) Time [s]')
self.fig.canvas.draw()
def save(self):
fn = self.output_filename('Select Filename', 'snuffled_traces.png')
self.fig.savefig(fn, pad_inches=0.1, bbox_inches='tight', dpi=320)
def set_center_latlon(self):
self.lat_c, self.lon_c, self.z_c = self.center_lat_lon(
self.get_stations())
self.set_parameter('lat_c', self.lat_c)
self.set_parameter('lon_c', self.lon_c)
def get_station_patterns(self, stations):
return ['%s.%s.%s.*' % s.nsl() for s in stations]
def __snufflings__():
return [TracePlotter()]