-
Notifications
You must be signed in to change notification settings - Fork 374
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Guang Yang
committed
Aug 15, 2024
1 parent
ccaaa46
commit 3c52b5e
Showing
1 changed file
with
100 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
import argparse | ||
import os | ||
|
||
import torch | ||
import torch.export._trace | ||
from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner | ||
from executorch.exir import EdgeCompileConfig, ExecutorchBackendConfig, to_edge | ||
from torch.nn.attention import SDPBackend | ||
from transformers import AutoModelForCausalLM, AutoTokenizer, PretrainedConfig | ||
|
||
|
||
def main() -> None: | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"-hfm", | ||
"--hf_model_repo", | ||
required=False, | ||
default=None, | ||
help="a valid huggingface model repo name", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
# Configs to HF model | ||
device = "cpu" | ||
dtype = torch.float32 | ||
max_batch_size = 1 | ||
max_seq_len = 123 | ||
cache_implementation = "static" | ||
attn_implementation = "sdpa" | ||
|
||
# Load and configure a HF model | ||
model = AutoModelForCausalLM.from_pretrained( | ||
args.hf_model_repo, | ||
attn_implementation=attn_implementation, | ||
device_map=device, | ||
torch_dtype=dtype, | ||
use_cache=True, | ||
cache_implementation=cache_implementation, | ||
cache_config={ | ||
"max_batch_size": max_batch_size, | ||
"max_cache_len": max_seq_len, | ||
}, | ||
) | ||
print(f"{model.config}") | ||
|
||
def _get_constant_methods(config: PretrainedConfig): | ||
return { | ||
"get_dtype": 5 if config.torch_dtype == torch.float16 else 6, | ||
"get_bos_id": config.bos_token_id, | ||
"get_eos_id": config.eos_token_id, | ||
"get_head_dim": config.hidden_size / config.num_attention_heads, | ||
"get_max_batch_size": config.cache_config.get("max_batch_size", 1), | ||
"get_max_seq_len": config.cache_config.get("max_cache_len", 1), | ||
"get_n_bos": 1, | ||
"get_n_eos": 1, | ||
"get_n_kv_heads": config.num_key_value_heads, | ||
"get_n_layers": config.num_hidden_layers, | ||
"get_vocab_size": config.vocab_size, | ||
"use_kv_cache": config.use_cache, | ||
} | ||
|
||
with torch.nn.attention.sdpa_kernel([SDPBackend.MATH]), torch.no_grad(): | ||
tokenizer = AutoTokenizer.from_pretrained(args.hf_model_repo) | ||
input_ids = tokenizer([""], return_tensors="pt").to(device)["input_ids"] | ||
cache_position = torch.tensor([0], dtype=torch.long) | ||
|
||
exported_prog = torch.export._trace._export( | ||
model, | ||
args=(input_ids,), | ||
kwargs={ | ||
"cache_position": cache_position, | ||
}, | ||
pre_dispatch=False, | ||
strict=True, | ||
) | ||
prog = ( | ||
to_edge( | ||
exported_prog, | ||
compile_config=EdgeCompileConfig( | ||
_check_ir_validity=False, | ||
_skip_dim_order=True, | ||
), | ||
constant_methods=_get_constant_methods(model.config), | ||
) | ||
.to_backend(XnnpackPartitioner(_lower_recomposed_sdpa=False)) | ||
.to_executorch( | ||
ExecutorchBackendConfig( | ||
extract_constant_segment=True, extract_delegate_segments=True | ||
) | ||
) | ||
) | ||
filename = os.path.join("./", f"{model.config.model_type}.pte") | ||
with open(filename, "wb") as f: | ||
prog.write_to_file(f) | ||
print(f"Saved exported program to {filename}") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |