-
Notifications
You must be signed in to change notification settings - Fork 374
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Guang Yang
committed
Sep 11, 2024
1 parent
af80804
commit d525d58
Showing
2 changed files
with
186 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
import argparse | ||
import os | ||
|
||
import torch | ||
import torch.export._trace | ||
from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner | ||
from executorch.exir import EdgeCompileConfig, ExecutorchBackendConfig, to_edge | ||
from torch.nn.attention import SDPBackend | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
from transformers.generation.configuration_utils import GenerationConfig | ||
from transformers.integrations.executorch import convert_and_export_with_cache | ||
from transformers.modeling_utils import PreTrainedModel | ||
|
||
|
||
def main() -> None: | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"-hfm", | ||
"--hf_model_repo", | ||
required=False, | ||
default=None, | ||
help="a valid huggingface model repo name", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
# Configs to HF model | ||
device = "cpu" | ||
dtype = torch.float32 | ||
batch_size = 1 | ||
max_length = 123 | ||
cache_implementation = "static" | ||
attn_implementation = "sdpa" | ||
|
||
# Load and configure a HF model | ||
model = AutoModelForCausalLM.from_pretrained( | ||
args.hf_model_repo, | ||
attn_implementation=attn_implementation, | ||
device_map=device, | ||
torch_dtype=dtype, | ||
generation_config=GenerationConfig( | ||
use_cache=True, | ||
cache_implementation=cache_implementation, | ||
max_length=max_length, | ||
cache_config={ | ||
"batch_size": batch_size, | ||
"max_cache_len": max_length, | ||
}, | ||
), | ||
) | ||
print(f"{model.config}") | ||
print(f"{model.generation_config}") | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(args.hf_model_repo) | ||
input_ids = tokenizer([""], return_tensors="pt").to(device)["input_ids"] | ||
cache_position = torch.tensor([0], dtype=torch.long) | ||
|
||
def _get_constant_methods(model: PreTrainedModel): | ||
return { | ||
"get_dtype": 5 if model.config.torch_dtype == torch.float16 else 6, | ||
"get_bos_id": model.config.bos_token_id, | ||
"get_eos_id": model.config.eos_token_id, | ||
"get_head_dim": model.config.hidden_size / model.config.num_attention_heads, | ||
"get_max_batch_size": model.generation_config.cache_config.batch_size, | ||
"get_max_seq_len": model.generation_config.cache_config.max_cache_len, | ||
"get_n_bos": 1, | ||
"get_n_eos": 1, | ||
"get_n_kv_heads": model.config.num_key_value_heads, | ||
"get_n_layers": model.config.num_hidden_layers, | ||
"get_vocab_size": model.config.vocab_size, | ||
"use_kv_cache": model.generation_config.use_cache, | ||
} | ||
|
||
with torch.nn.attention.sdpa_kernel([SDPBackend.MATH]), torch.no_grad(): | ||
|
||
exported_prog = convert_and_export_with_cache(model, input_ids, cache_position) | ||
prog = ( | ||
to_edge( | ||
exported_prog, | ||
compile_config=EdgeCompileConfig( | ||
_check_ir_validity=False, | ||
_skip_dim_order=True, | ||
), | ||
constant_methods=_get_constant_methods(model), | ||
) | ||
.to_backend(XnnpackPartitioner()) | ||
.to_executorch(ExecutorchBackendConfig(extract_delegate_segments=True)) | ||
) | ||
filename = os.path.join("./", f"{model.config.model_type}.pte") | ||
with open(filename, "wb") as f: | ||
prog.write_to_file(f) | ||
print(f"Saved exported program to {filename}") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |