Skip to content

Website and Github update #166

Website and Github update

Website and Github update #166

Workflow file for this run

name: CI_GPU
on:
push:
branches:
- main
pull_request:
branches:
- main
jobs:
# Temporarily disable this test since there is no server including multiple GPUs.
# unittest_multi_gpu:
# runs-on: 4-core-ubuntu-gpu-t4
# steps:
# - name: Checkout
# uses: actions/checkout@v2
# - name: Display Python version
# run: python3 -c "import sys; print(sys.version)"
# - name: Set up Python
# uses: actions/setup-python@v2
# with:
# python-version: '3.x'
# - name: Install dependencies
# run: |
# python -m pip install --upgrade pip
# ./scripts/install_via_pip.sh -c
# - name: Run multi-GPU unit tests
# run: |
# python3 -m unittest opacus.tests.multigpu_gradcheck.GradientComputationTest.test_gradient_correct
integrationtest_py39_torch_release_cuda:
runs-on: 4-core-ubuntu-gpu-t4
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.9'
- name: Install dependencies
run: |
python3 -m pip install --upgrade pip
pip install pytest coverage coveralls
./scripts/install_via_pip.sh -c
# Cuda dependency has already been installed when installing PyTorch, so no need to re-install it.
# https://discuss.pytorch.org/t/should-i-install-the-extra-cudatoolkit-and-cudnn/194528
# Cuda installation guide: https://medium.com/@milistu/how-to-install-cuda-cudnn-7e4a00ae4f44
# - name: Install CUDA toolkit and cuDNN
# run: |
# sudo apt-get update
# sudo apt-get install -y --no-install-recommends \
# cuda-toolkit-11-1 \
# libcudnn8=8.1.1.33-1+cuda11.1 \
# libcudnn8-dev=8.1.1.33-1+cuda11.1
- name: Run MNIST integration test (CUDA)
run: |
nvidia-smi
mkdir -p runs/mnist/data
mkdir -p runs/mnist/test-reports
python -c "import torch; exit(0) if torch.cuda.is_available() else exit(1)"
python examples/mnist.py --lr 0.25 --sigma 0.7 -c 1.5 --batch-size 64 --epochs 1 --data-root runs/mnist/data --n-runs 1 --device cuda
python -c "import torch; accuracy = torch.load('run_results_mnist_0.25_0.7_1.5_64_1.pt'); exit(0) if (accuracy[0]>0.78 and accuracy[0]<0.95) else exit(1)"
- name: Store MNIST test results
uses: actions/upload-artifact@v4
with:
name: mnist-gpu-reports
path: runs/mnist/test-reports
- name: Run CIFAR10 integration test (CUDA)
run: |
mkdir -p runs/cifar10/data
mkdir -p runs/cifar10/logs
mkdir -p runs/cifar10/test-reports
pip install tensorboard
python examples/cifar10.py --lr 0.1 --sigma 1.5 -c 10 --batch-size 2000 --epochs 10 --data-root runs/cifar10/data --log-dir runs/cifar10/logs --device cuda
python -c "import torch; model = torch.load('model_best.pth.tar'); exit(0) if (model['best_acc1']>0.4 and model['best_acc1']<0.49) else exit(1)"
python examples/cifar10.py --lr 0.1 --sigma 1.5 -c 10 --batch-size 2000 --epochs 10 --data-root runs/cifar10/data --log-dir runs/cifar10/logs --device cuda --grad_sample_mode no_op
python -c "import torch; model = torch.load('model_best.pth.tar'); exit(0) if (model['best_acc1']>0.4 and model['best_acc1']<0.49) else exit(1)"
- name: Store CIFAR10 test results
uses: actions/upload-artifact@v4
with:
name: cifar10-gpu-reports
path: runs/cifar10/test-reports
# To save resouces, there is no need to run all the tests.
# - name: Run IMDb integration test (CUDA)
# run: |
# mkdir -p runs/imdb/data
# mkdir -p runs/imdb/test-reports
# pip install --user datasets transformers
# python examples/imdb.py --lr 0.02 --sigma 1.0 -c 1.0 --batch-size 64 --max-sequence-length 256 --epochs 2 --data-root runs/imdb/data --device cuda
# python -c "import torch; accuracy = torch.load('run_results_imdb_classification.pt'); exit(0) if (accuracy>0.54 and accuracy<0.66) else exit(1)"
# - name: Store IMDb test results
# uses: actions/upload-artifact@v4
# with:
# name: imdb-gpu-reports
# path: runs/imdb/test-reports
# - name: Run charlstm integration test (CUDA)
# run: |
# mkdir -p runs/charlstm/data
# wget https://download.pytorch.org/tutorial/data.zip -O runs/charlstm/data/data.zip
# unzip runs/charlstm/data/data.zip -d runs/charlstm/data
# rm runs/charlstm/data/data.zip
# mkdir -p runs/charlstm/test-reports
# pip install scikit-learn
# python examples/char-lstm-classification.py --epochs=20 --learning-rate=2.0 --hidden-size=128 --delta=8e-5 --batch-size 400 --n-layers=1 --sigma=1.0 --max-per-sample-grad-norm=1.5 --data-root="runs/charlstm/data/data/names/" --device cuda --test-every 5
# python -c "import torch; accuracy = torch.load('run_results_chr_lstm_classification.pt'); exit(0) if (accuracy>0.60 and accuracy<0.80) else exit(1)"
# - name: Store test results
# uses: actions/upload-artifact@v4
# with:
# name: charlstm-gpu-reports
# path: runs/charlstm/test-reports
# We will have new benchmarks for Ghost Clipping.
# micro_benchmarks_py39_torch_release_cuda:
# runs-on: ubuntu-latest
# needs: [integrationtest_py39_torch_release_cuda]
# container:
# # https://hub.docker.com/r/nvidia/cuda
# image: nvidia/cuda:12.3.1-base-ubuntu22.04
# options: --gpus all
# env:
# TZ: 'UTC'
# steps:
# - name: Checkout
# uses: actions/checkout@v2
# - name: Set up Python
# uses: actions/setup-python@v2
# with:
# python-version: 3.9
# - name: Install dependencies
# run: |
# python -m pip install --upgrade pip
# pip install pytest coverage coveralls
# ./scripts/install_via_pip.sh
# - name: Install CUDA toolkit and cuDNN
# run: |
# apt-get update
# apt-get install -y --no-install-recommends \
# cuda-toolkit-11-1 \
# libcudnn8=8.1.1.33-1+cuda11.1 \
# libcudnn8-dev=8.1.1.33-1+cuda11.1
# - name: Run benchmark integration tests (CUDA)
# run: |
# mkdir -p benchmarks/results/raw
# python benchmarks/run_benchmarks.py --batch_size 16 --layers "groupnorm instancenorm layernorm" --config_file ./benchmarks/config.json --root ./benchmarks/results/raw/ --cont
# IFS=$' ';layers=("groupnorm" "instancenorm" "layernorm"); rm -rf /tmp/report_layers; mkdir -p /tmp/report_layers; IFS=$'\n'; files=`( echo "${layers[*]}" ) | sed 's/.*/.\/benchmarks\/results\/raw\/&*/'`
# cp -v ${files[@]} /tmp/report_layers
# report_id=`IFS=$'-'; echo "${layers[*]}"`
# python benchmarks/generate_report.py --path-to-results /tmp/report_layers --save-path benchmarks/results/report-${report_id}.csv --format csv
# python benchmarks/generate_report.py --path-to-results /tmp/report_layers --save-path benchmarks/results/report-${report_id}.pkl --format pkl
# python benchmarks/check_threshold.py --report-path "./benchmarks/results/report-"$report_id".pkl" --metric runtime --threshold 3.0 --column "hooks/baseline"
# python benchmarks/check_threshold.py --report-path "./benchmarks/results/report-"$report_id".pkl" --metric memory --threshold 1.6 --column "hooks/baseline"
# - name: Store artifacts
# uses: actions/upload-artifact@v2
# with:
# name: benchmarks-reports
# path: benchmarks/results/