Skip to content

Commit e5f2fa2

Browse files
committed
[Example] Add MCTS example
ghstack-source-id: 4cf2a162e81a2d58bf4cedfa6b22fae100398323 Pull Request resolved: #2796
1 parent 812e8ff commit e5f2fa2

File tree

3 files changed

+217
-2
lines changed

3 files changed

+217
-2
lines changed

Diff for: examples/trees/mcts.py

+205
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,205 @@
1+
# Copyright (c) Meta Platforms, Inc. and affiliates.
2+
#
3+
# This source code is licensed under the MIT license found in the
4+
# LICENSE file in the root directory of this source tree.
5+
6+
import time
7+
8+
import torch
9+
import torchrl
10+
import torchrl.envs
11+
from tensordict import TensorDict
12+
13+
start_time = time.time()
14+
15+
pgn_or_fen = "fen"
16+
mask_actions = True
17+
18+
env = torchrl.envs.ChessEnv(
19+
include_pgn=False,
20+
include_fen=True,
21+
include_hash=True,
22+
include_hash_inv=True,
23+
include_san=True,
24+
stateful=True,
25+
mask_actions=mask_actions,
26+
)
27+
28+
29+
def transform_reward(td):
30+
if "reward" not in td:
31+
return td
32+
reward = td["reward"]
33+
if reward == 0.5:
34+
td["reward"] = 0
35+
elif reward == 1 and td["turn"]:
36+
td["reward"] = -td["reward"]
37+
return td
38+
39+
40+
# ChessEnv sets the reward to 0.5 for a draw and 1 for a win for either player.
41+
# Need to transform the reward to be:
42+
# white win = 1
43+
# draw = 0
44+
# black win = -1
45+
env = env.append_transform(transform_reward)
46+
47+
forest = torchrl.data.MCTSForest()
48+
forest.reward_keys = env.reward_keys
49+
forest.done_keys = env.done_keys
50+
forest.action_keys = env.action_keys
51+
52+
if mask_actions:
53+
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn", "action_mask"]
54+
else:
55+
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn"]
56+
57+
C = 2.0**0.5
58+
59+
60+
def traversal_priority_UCB1(tree):
61+
subtree = tree.subtree
62+
visits = subtree.visits
63+
reward_sum = subtree.wins
64+
65+
# If it's black's turn, flip the reward, since black wants to
66+
# optimize for the lowest reward, not highest.
67+
if not subtree.rollout[0, 0]["turn"]:
68+
reward_sum = -reward_sum
69+
70+
parent_visits = tree.visits
71+
reward_sum = reward_sum.squeeze(-1)
72+
priority = (reward_sum + C * torch.sqrt(torch.log(parent_visits))) / visits
73+
priority[visits == 0] = float("inf")
74+
return priority
75+
76+
77+
def _traverse_MCTS_one_step(forest, tree, env, max_rollout_steps):
78+
done = False
79+
trees_visited = [tree]
80+
81+
while not done:
82+
if tree.subtree is None:
83+
td_tree = tree.rollout[-1]["next"].clone()
84+
85+
if (tree.visits > 0 or tree.parent is None) and not td_tree["done"]:
86+
actions = env.all_actions(td_tree)
87+
subtrees = []
88+
89+
for action in actions:
90+
td = env.step(env.reset(td_tree).update(action))
91+
new_node = torchrl.data.Tree(
92+
rollout=td.unsqueeze(0),
93+
node_data=td["next"].select(*forest.node_map.in_keys),
94+
count=torch.tensor(0),
95+
wins=torch.zeros_like(td["next"]["reward"]),
96+
)
97+
subtrees.append(new_node)
98+
99+
# NOTE: This whole script runs about 2x faster with lazy stack
100+
# versus eager stack.
101+
tree.subtree = TensorDict.lazy_stack(subtrees)
102+
chosen_idx = torch.randint(0, len(subtrees), ()).item()
103+
rollout_state = subtrees[chosen_idx].rollout[-1]["next"]
104+
105+
else:
106+
rollout_state = td_tree
107+
108+
if rollout_state["done"]:
109+
rollout_reward = rollout_state["reward"]
110+
else:
111+
rollout = env.rollout(
112+
max_steps=max_rollout_steps,
113+
tensordict=rollout_state,
114+
)
115+
rollout_reward = rollout[-1]["next", "reward"]
116+
done = True
117+
118+
else:
119+
priorities = traversal_priority_UCB1(tree)
120+
chosen_idx = torch.argmax(priorities).item()
121+
tree = tree.subtree[chosen_idx]
122+
trees_visited.append(tree)
123+
124+
for tree in trees_visited:
125+
tree.visits += 1
126+
tree.wins += rollout_reward
127+
128+
129+
def traverse_MCTS(forest, root, env, num_steps, max_rollout_steps):
130+
"""Performs Monte-Carlo tree search in an environment.
131+
132+
Args:
133+
forest (MCTSForest): Forest of the tree to update. If the tree does not
134+
exist yet, it is added.
135+
root (TensorDict): The root step of the tree to update.
136+
env (EnvBase): Environment to performs actions in.
137+
num_steps (int): Number of iterations to traverse.
138+
max_rollout_steps (int): Maximum number of steps for each rollout.
139+
"""
140+
if root not in forest:
141+
for action in env.all_actions(root):
142+
td = env.step(env.reset(root.clone()).update(action))
143+
forest.extend(td.unsqueeze(0))
144+
145+
tree = forest.get_tree(root)
146+
tree.wins = torch.zeros_like(td["next", "reward"])
147+
for subtree in tree.subtree:
148+
subtree.wins = torch.zeros_like(td["next", "reward"])
149+
150+
for _ in range(num_steps):
151+
_traverse_MCTS_one_step(forest, tree, env, max_rollout_steps)
152+
153+
return tree
154+
155+
156+
def tree_format_fn(tree):
157+
td = tree.rollout[-1]["next"]
158+
return [
159+
td["san"],
160+
td[pgn_or_fen].split("\n")[-1],
161+
tree.wins,
162+
tree.visits,
163+
]
164+
165+
166+
def get_best_move(fen, mcts_steps, rollout_steps):
167+
root = env.reset(TensorDict({"fen": fen}))
168+
tree = traverse_MCTS(forest, root, env, mcts_steps, rollout_steps)
169+
moves = []
170+
171+
for subtree in tree.subtree:
172+
san = subtree.rollout[0]["next", "san"]
173+
reward_sum = subtree.wins
174+
visits = subtree.visits
175+
value_avg = (reward_sum / visits).item()
176+
if not subtree.rollout[0]["turn"]:
177+
value_avg = -value_avg
178+
moves.append((value_avg, san))
179+
180+
moves = sorted(moves, key=lambda x: -x[0])
181+
182+
print("------------------")
183+
for value_avg, san in moves:
184+
print(f" {value_avg:0.02f} {san}")
185+
print("------------------")
186+
187+
return moves[0][1]
188+
189+
190+
# White has M1, best move Rd8#. Any other moves lose to M2 or M1.
191+
fen0 = "7k/6pp/7p/7K/8/8/6q1/3R4 w - - 0 1"
192+
assert get_best_move(fen0, 100, 10) == "Rd8#"
193+
194+
# Black has M1, best move Qg6#. Other moves give rough equality or worse.
195+
fen1 = "6qk/2R4p/7K/8/8/8/8/4R3 b - - 1 1"
196+
assert get_best_move(fen1, 100, 10) == "Qg6#"
197+
198+
# White has M2, best move Rxg8+. Any other move loses.
199+
fen2 = "2R3qk/5p1p/7K/8/8/8/5r2/2R5 w - - 0 1"
200+
assert get_best_move(fen2, 1000, 10) == "Rxg8+"
201+
202+
end_time = time.time()
203+
total_time = end_time - start_time
204+
205+
print(f"Took {total_time} s")

Diff for: torchrl/data/map/tree.py

+5
Original file line numberDiff line numberDiff line change
@@ -1363,6 +1363,11 @@ def valid_paths(cls, tree: Tree):
13631363
def __len__(self):
13641364
return len(self.data_map)
13651365

1366+
def __contains__(self, root: TensorDictBase):
1367+
if self.node_map is None:
1368+
return False
1369+
return root.select(*self.node_map.in_keys) in self.node_map
1370+
13661371
def to_string(self, td_root, node_format_fn=lambda tree: tree.node_data.to_dict()):
13671372
"""Generates a string representation of a tree in the forest.
13681373

Diff for: torchrl/envs/custom/chess.py

+7-2
Original file line numberDiff line numberDiff line change
@@ -222,12 +222,15 @@ def lib(cls):
222222
return chess
223223

224224
_san_moves = []
225+
_san_move_to_index_map = {}
225226

226227
@_classproperty
227228
def san_moves(cls):
228229
if not cls._san_moves:
229230
with open(pathlib.Path(__file__).parent / "san_moves.txt", "r+") as f:
230231
cls._san_moves.extend(f.read().split("\n"))
232+
for idx, san_move in enumerate(cls._san_moves):
233+
cls._san_move_to_index_map[san_move] = idx
231234
return cls._san_moves
232235

233236
def _legal_moves_to_index(
@@ -255,7 +258,7 @@ def _legal_moves_to_index(
255258
board = self.board
256259

257260
indices = torch.tensor(
258-
[self._san_moves.index(board.san(m)) for m in board.legal_moves],
261+
[self._san_move_to_index_map[board.san(m)] for m in board.legal_moves],
259262
dtype=torch.int64,
260263
)
261264
mask = None
@@ -409,7 +412,9 @@ def _reset(self, tensordict=None):
409412
if move is None:
410413
dest.set("san", "<start>")
411414
else:
412-
dest.set("san", self.board.san(move))
415+
prev_board = self.board.copy()
416+
prev_board.pop()
417+
dest.set("san", prev_board.san(move))
413418
if self.include_fen:
414419
dest.set("fen", fen)
415420
if self.include_pgn:

0 commit comments

Comments
 (0)