diff --git a/pyresample/gradient/__init__.py b/pyresample/gradient/__init__.py index 4e2aa3b8..41c98846 100644 --- a/pyresample/gradient/__init__.py +++ b/pyresample/gradient/__init__.py @@ -414,14 +414,15 @@ def parallel_gradient_search(data, src_x, src_y, dst_x, dst_y, else: is_pad = False res = dask.delayed(_gradient_resample_data)( - arr.astype(np.float64), + arr, src_x[i], src_y[i], src_gradient_xl[i], src_gradient_xp[i], src_gradient_yl[i], src_gradient_yp[i], dst_x[i], dst_y[i], method=method) res = da.from_delayed(res, (num_bands, ) + dst_x[i].shape, - dtype=np.float64) + meta=np.array((), dtype=arr.dtype), + dtype=arr.dtype) if dst_mosaic_locations[i] in chunks: if not is_pad: chunks[dst_mosaic_locations[i]].append(res) diff --git a/pyresample/gradient/_gradient_search.pyx b/pyresample/gradient/_gradient_search.pyx index 838c73b3..e291866e 100644 --- a/pyresample/gradient/_gradient_search.pyx +++ b/pyresample/gradient/_gradient_search.pyx @@ -23,18 +23,22 @@ import numpy as np -cimport numpy as np - -DTYPE = np.double -ctypedef np.double_t DTYPE_t cimport cython +cimport numpy as np from libc.math cimport fabs, isinf +ctypedef fused data_type: + np.float64_t + np.float32_t + +ctypedef np.float64_t float_index +float_index_dtype = np.float64 + np.import_array() @cython.boundscheck(False) @cython.wraparound(False) -cdef inline void nn(const DTYPE_t[:, :, :] data, int l0, int p0, double dl, double dp, int lmax, int pmax, DTYPE_t[:] res) noexcept nogil: +cdef inline void nn(const data_type[:, :, :] data, int l0, int p0, float_index dl, float_index dp, int lmax, int pmax, data_type[:] res) noexcept nogil: cdef int nnl, nnp cdef size_t z_size = res.shape[0] cdef size_t i @@ -54,9 +58,9 @@ cdef inline void nn(const DTYPE_t[:, :, :] data, int l0, int p0, double dl, doub @cython.boundscheck(False) @cython.wraparound(False) -cdef inline void bil(const DTYPE_t[:, :, :] data, int l0, int p0, double dl, double dp, int lmax, int pmax, DTYPE_t[:] res) noexcept nogil: +cdef inline void bil(const data_type[:, :, :] data, int l0, int p0, float_index dl, float_index dp, int lmax, int pmax, data_type[:] res) noexcept nogil: cdef int l_a, l_b, p_a, p_b - cdef double w_l, w_p + cdef float_index w_l, w_p cdef size_t z_size = res.shape[0] cdef size_t i if dl < 0: @@ -84,26 +88,28 @@ cdef inline void bil(const DTYPE_t[:, :, :] data, int l0, int p0, double dl, dou @cython.boundscheck(False) @cython.wraparound(False) -cdef inline void indices_xy(const DTYPE_t[:, :, :] data, int l0, int p0, double dl, double dp, int lmax, int pmax, DTYPE_t[:] res) noexcept nogil: +cdef inline void indices_xy(const data_type[:, :, :] data, int l0, int p0, float_index dl, float_index dp, int lmax, int pmax, data_type[:] res) noexcept nogil: cdef int nnl, nnp cdef size_t z_size = res.shape[0] cdef size_t i res[1] = dl + l0 res[0] = dp + p0 -ctypedef void (*FN)(const DTYPE_t[:, :, :] data, int l0, int p0, double dl, double dp, int lmax, int pmax, DTYPE_t[:] res) noexcept nogil + +ctypedef void (*FN)(const data_type[:, :, :] data, int l0, int p0, float_index dl, float_index dp, int lmax, int pmax, data_type[:] res) noexcept nogil + @cython.boundscheck(False) @cython.wraparound(False) -cpdef one_step_gradient_search(const DTYPE_t [:, :, :] data, - DTYPE_t [:, :] src_x, - DTYPE_t [:, :] src_y, - DTYPE_t [:, :] xl, - DTYPE_t [:, :] xp, - DTYPE_t [:, :] yl, - DTYPE_t [:, :] yp, - DTYPE_t [:, :] dst_x, - DTYPE_t [:, :] dst_y, +cpdef one_step_gradient_search(const data_type[:, :, :] data, + float_index [:, :] src_x, + float_index [:, :] src_y, + float_index [:, :] xl, + float_index [:, :] xp, + float_index [:, :] yl, + float_index [:, :] yp, + float_index [:, :] dst_x, + float_index [:, :] dst_y, str method='bilinear'): """Gradient search, simple case variant.""" cdef FN fun @@ -118,10 +124,14 @@ cpdef one_step_gradient_search(const DTYPE_t [:, :, :] data, cdef size_t y_size = dst_y.shape[0] cdef size_t x_size = dst_x.shape[1] + if data_type is double: + dtype = np.float64 + else: + dtype = np.float32 # output image array --> needs to be (lines, pixels) --> y,x - image = np.full([z_size, y_size, x_size], np.nan, dtype=DTYPE) - cdef DTYPE_t [:, :, :] image_view = image + image = np.full([z_size, y_size, x_size], np.nan, dtype=dtype) + cdef data_type[:, :, :] image_view = image with nogil: one_step_gradient_search_no_gil(data, src_x, src_y, @@ -132,22 +142,23 @@ cpdef one_step_gradient_search(const DTYPE_t [:, :, :] data, # return the output image return image + @cython.boundscheck(False) @cython.wraparound(False) @cython.cdivision(True) -cdef void one_step_gradient_search_no_gil(const DTYPE_t[:, :, :] data, - const DTYPE_t[:, :] src_x, - const DTYPE_t[:, :] src_y, - const DTYPE_t[:, :] xl, - const DTYPE_t[:, :] xp, - const DTYPE_t[:, :] yl, - const DTYPE_t[:, :] yp, - const DTYPE_t[:, :] dst_x, - const DTYPE_t[:, :] dst_y, +cdef void one_step_gradient_search_no_gil(const data_type[:, :, :] data, + const float_index[:, :] src_x, + const float_index[:, :] src_y, + const float_index[:, :] xl, + const float_index[:, :] xp, + const float_index[:, :] yl, + const float_index[:, :] yp, + const float_index[:, :] dst_x, + const float_index[:, :] dst_y, const size_t x_size, const size_t y_size, FN fun, - DTYPE_t[:, :, :] result_array) noexcept nogil: + data_type[:, :, :] result_array) noexcept nogil: # pixel max ---> data is expected in [lines, pixels] cdef int pmax = src_x.shape[1] - 1 @@ -161,7 +172,7 @@ cdef void one_step_gradient_search_no_gil(const DTYPE_t[:, :, :] data, # intermediate variables: cdef int l_a, l_b, p_a, p_b cdef size_t i, j, elt - cdef double dx, dy, d, dl, dp + cdef float_index dx, dy, d, dl, dp cdef int col_step = -1 # number of iterations cdef int cnt = 0 @@ -218,16 +229,17 @@ cdef void one_step_gradient_search_no_gil(const DTYPE_t[:, :, :] data, p0 = int(p0 + dp) j += col_step + @cython.boundscheck(False) @cython.wraparound(False) -cpdef one_step_gradient_indices(DTYPE_t [:, :] src_x, - DTYPE_t [:, :] src_y, - DTYPE_t [:, :] xl, - DTYPE_t [:, :] xp, - DTYPE_t [:, :] yl, - DTYPE_t [:, :] yp, - DTYPE_t [:, :] dst_x, - DTYPE_t [:, :] dst_y): +cpdef one_step_gradient_indices(float_index [:, :] src_x, + float_index [:, :] src_y, + float_index [:, :] xl, + float_index [:, :] xp, + float_index [:, :] yl, + float_index [:, :] yp, + float_index [:, :] dst_x, + float_index [:, :] dst_y): """Gradient search, simple case variant, returning float indices. This is appropriate for monotonous gradients only, i.e. not modis or viirs in satellite projection. @@ -238,18 +250,19 @@ cpdef one_step_gradient_indices(DTYPE_t [:, :] src_x, cdef size_t y_size = dst_y.shape[0] cdef size_t x_size = dst_x.shape[1] + # output indices arrays --> needs to be (lines, pixels) --> y,x - indices = np.full([2, y_size, x_size], np.nan, dtype=DTYPE) - cdef DTYPE_t [:, :, :] indices_view = indices + indices = np.full([2, y_size, x_size], np.nan, dtype=float_index_dtype) + cdef float_index [:, :, :] indices_view_result = indices # fake_data is not going to be used anyway as we just fill in the indices - cdef DTYPE_t [:, :, :] fake_data = np.full([1, 1, 1], np.nan, dtype=DTYPE) + cdef float_index [:, :, :] fake_data = np.full([1, 1, 1], np.nan, dtype=float_index_dtype) with nogil: - one_step_gradient_search_no_gil(fake_data, - src_x, src_y, - xl, xp, yl, yp, - dst_x, dst_y, - x_size, y_size, - indices_xy, indices_view) + one_step_gradient_search_no_gil[float_index](fake_data, + src_x, src_y, + xl, xp, yl, yp, + dst_x, dst_y, + x_size, y_size, + indices_xy, indices_view_result) return indices diff --git a/pyresample/test/test_gradient.py b/pyresample/test/test_gradient.py index 0a7b8c37..5b915be2 100644 --- a/pyresample/test/test_gradient.py +++ b/pyresample/test/test_gradient.py @@ -249,28 +249,42 @@ def test_resample_area_to_area_3d_single_channel(self): assert res.shape == (1, ) + self.dst_area.shape assert np.allclose(res[0, :, :], 1.0) - def test_resample_swath_to_area_2d(self): + @pytest.mark.parametrize("input_dtype", (np.float32, np.float64)) + def test_resample_swath_to_area_2d(self, input_dtype): """Resample swath to area, 2d.""" - data = xr.DataArray(da.ones(self.src_swath.shape, dtype=np.float64), + data = xr.DataArray(da.ones(self.src_swath.shape, dtype=input_dtype), dims=['y', 'x']) with np.errstate(invalid="ignore"): # 'inf' space pixels cause runtime warnings - res = self.swath_resampler.compute( - data, method='bil').compute(scheduler='single-threaded') - assert res.shape == self.dst_area.shape - assert not np.all(np.isnan(res)) - - def test_resample_swath_to_area_3d(self): + res_xr = self.swath_resampler.compute(data, method='bil') + res_np = res_xr.compute(scheduler='single-threaded') + + assert res_xr.dtype == data.dtype + assert res_np.dtype == data.dtype + assert res_xr.shape == self.dst_area.shape + assert res_np.shape == self.dst_area.shape + assert type(res_xr) is type(data) + assert type(res_xr.data) is type(data.data) + assert not np.all(np.isnan(res_np)) + + @pytest.mark.parametrize("input_dtype", (np.float32, np.float64)) + def test_resample_swath_to_area_3d(self, input_dtype): """Resample area to area, 3d.""" data = xr.DataArray(da.ones((3, ) + self.src_swath.shape, - dtype=np.float64) * + dtype=input_dtype) * np.array([1, 2, 3])[:, np.newaxis, np.newaxis], dims=['bands', 'y', 'x']) with np.errstate(invalid="ignore"): # 'inf' space pixels cause runtime warnings - res = self.swath_resampler.compute( - data, method='bil').compute(scheduler='single-threaded') - assert res.shape == (3, ) + self.dst_area.shape - for i in range(res.shape[0]): - arr = np.ravel(res[i, :, :]) + res_xr = self.swath_resampler.compute(data, method='bil') + res_np = res_xr.compute(scheduler='single-threaded') + + assert res_xr.dtype == data.dtype + assert res_np.dtype == data.dtype + assert res_xr.shape == (3, ) + self.dst_area.shape + assert res_np.shape == (3, ) + self.dst_area.shape + assert type(res_xr) is type(data) + assert type(res_xr.data) is type(data.data) + for i in range(res_np.shape[0]): + arr = np.ravel(res_np[i, :, :]) assert np.allclose(arr[np.isfinite(arr)], float(i + 1)) @@ -496,7 +510,7 @@ def test_resample_area_to_area_nn(self): class TestRBGradientSearchResamplerArea2Swath: - """Test RBGradientSearchResampler for the Swath to Area case.""" + """Test RBGradientSearchResampler for the Area to Swath case.""" def setup_method(self): """Set up the test case."""