-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstraints.py
180 lines (141 loc) · 5.91 KB
/
constraints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from __future__ import absolute_import
import six
from . import backend as K
from .utils.generic_utils import serialize_keras_object
from .utils.generic_utils import deserialize_keras_object
class Constraint(object):
def __call__(self, w):
return w
def get_config(self):
return {}
class MaxNorm(Constraint):
"""MaxNorm weight constraint.
Constrains the weights incident to each hidden unit
to have a norm less than or equal to a desired value.
# Arguments
m: the maximum norm for the incoming weights.
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
# References
- [Dropout: A Simple Way to Prevent Neural Networks from Overfitting Srivastava, Hinton, et al. 2014](http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf)
"""
def __init__(self, max_value=2, axis=0):
self.max_value = max_value
self.axis = axis
def __call__(self, w):
norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True))
desired = K.clip(norms, 0, self.max_value)
w *= (desired / (K.epsilon() + norms))
return w
def get_config(self):
return {'max_value': self.max_value,
'axis': self.axis}
class NonNeg(Constraint):
"""Constrains the weights to be non-negative.
"""
def __call__(self, w):
w *= K.cast(K.greater_equal(w, 0.), K.floatx())
return w
class UnitNorm(Constraint):
"""Constrains the weights incident to each hidden unit to have unit norm.
# Arguments
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, axis=0):
self.axis = axis
def __call__(self, w):
return w / (K.epsilon() + K.sqrt(K.sum(K.square(w),
axis=self.axis,
keepdims=True)))
def get_config(self):
return {'axis': self.axis}
class MinMaxNorm(Constraint):
"""MinMaxNorm weight constraint.
Constrains the weights incident to each hidden unit
to have the norm between a lower bound and an upper bound.
# Arguments
min_value: the minimum norm for the incoming weights.
max_value: the maximum norm for the incoming weights.
rate: rate for enforcing the constraint: weights will be
rescaled to yield
`(1 - rate) * norm + rate * norm.clip(min_value, max_value)`.
Effectively, this means that rate=1.0 stands for strict
enforcement of the constraint, while rate<1.0 means that
weights will be rescaled at each step to slowly move
towards a value inside the desired interval.
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, min_value=0.0, max_value=1.0, rate=1.0, axis=0):
self.min_value = min_value
self.max_value = max_value
self.rate = rate
self.axis = axis
def __call__(self, w):
norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True))
desired = (self.rate * K.clip(norms, self.min_value, self.max_value) +
(1 - self.rate) * norms)
w *= (desired / (K.epsilon() + norms))
return w
def get_config(self):
return {'min_value': self.min_value,
'max_value': self.max_value,
'rate': self.rate,
'axis': self.axis}
# Aliases.
max_norm = MaxNorm
non_neg = NonNeg
unit_norm = UnitNorm
min_max_norm = MinMaxNorm
# Legacy aliases.
maxnorm = max_norm
nonneg = non_neg
unitnorm = unit_norm
def serialize(constraint):
return serialize_keras_object(constraint)
def deserialize(config, custom_objects=None):
return deserialize_keras_object(config,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name='constraint')
def get(identifier):
if identifier is None:
return None
if isinstance(identifier, dict):
return deserialize(identifier)
elif isinstance(identifier, six.string_types):
config = {'class_name': str(identifier), 'config': {}}
return deserialize(config)
elif callable(identifier):
return identifier
else:
raise ValueError('Could not interpret constraint identifier:',
identifier)