-
Notifications
You must be signed in to change notification settings - Fork 0
/
scene_classification_implemented_by_tensorflow.py
280 lines (263 loc) · 9.93 KB
/
scene_classification_implemented_by_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/4/7 16:18
# @Author : Zehan Song
# @Site :
# @File : cnn.py
# @Software: PyCharm
# set your config class
import tensorflow as tf
import warnings
import os
import time
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
#默认为0:输出所有log信息
#设置为1:进一步屏蔽INFO信息
#设置为2:进一步屏蔽WARNING信息
#设置为3:进一步屏蔽ERROR信息
class Config(object):
# data_path parameters
class_path = "/home/szh/TIP/scene_classes.csv"
data_path = "/home/szh/AIchallenger/baseline/final/"
train_data_json = "/home/szh/TIP/scene_train_annotations_20170904.json"
val_data_json = "/home/szh/TIP/scene_validation_annotations_20170908.json"
#train parameters
lr = 0.001
batch_size = 64
max_epoch = 50
#evaluation parameters
save_path = "/home/szh/TIP/model_path"
evaluation_period = 10
def parse(self,kwargs):
for k,v in kwargs.items():
if not hasattr(self,k):
warnings.warn("your config doesn't have that key(%s)" %(k))
else:
setattr(self,k,v)
print('user config:')
print('#################################')
for k in dir(self):
if not k.startswith('_') and k != 'parse' and k != 'state_dict':
print k, getattr(self, k)
print('#################################')
return self
def state_dict(self):
return {k: getattr(self, k) for k in dir(self) if not k.startswith('_') and k != 'parse' and k != 'state_dict'}
Config.parse = parse
Config.state_dict = state_dict
opt = Config()
#set your batcher
import json
import pandas as pd
import numpy as np
import random
from PIL import Image
import cv2
class_names = pd.read_csv(opt.class_path,header=None)
number_ids = class_names[0]
chinese_names = class_names[1]
english_names = class_names[2]
class Batcher(object):
def __init__(self,train,data_path,json_path,batch_size=opt.batch_size):
with open(json_path,'r') as f:
data = json.load(f)
self.train = train
self.batch_size = batch_size
self.all_img_paths = [os.path.join(opt.data_path,d["image_id"]) for d in data]
self.all_label_ids = [d["label_id"] for d in data]
self.start = 0
self.data_index = list(range(len(self.all_img_paths)))
if self.train:
random.shuffle(self.data_index)
def reset(self):
self.start = 0
if self.train:
random.shuffle(self.data_index)
def img_resize(self, imgpath, img_size):
# resize the image to the specific size
img = Image.open(imgpath)
if (img.width > img.height):
scale = float(img_size) / float(img.height)
img = np.array(cv2.resize(np.array(img), (
int(img.width * scale + 1), img_size))).astype(np.float32)
else:
scale = float(img_size) / float(img.width)
img = np.array(cv2.resize(np.array(img), (
img_size, int(img.height * scale + 1)))).astype(np.float32)
# crop the proper size and scale to [-1, 1]
img = (img[
(img.shape[0] - img_size) // 2:
(img.shape[0] - img_size) // 2 + img_size,
(img.shape[1] - img_size) // 2:
(img.shape[1] - img_size) // 2 + img_size,
:]-127)/255
return img
def get_data(self):
# begin = time.time()
if not self.train:
self.batch_size = len(self.all_img_paths)
# config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
# config.allow_soft_placement = True
# sess = tf.Session(config=config)
image_batch = []
label_batch = []
if self.start>len(self.all_img_paths):
self.reset()
self.end = min(self.start+self.batch_size,len(self.all_img_paths))
for i in range(self.start,self.end):
img = self.img_resize(self.all_img_paths[i],128)
# img = tf.image.convert_image_dtype(img,dtype=tf.float32)
# img = tf.image.resize_images(img,[128,128])
# if self.train:
# img = tf.image.random_flip_up_down(img)
# img = tf.image.random_flip_left_right(img)
# img = tf.image.random_brightness(img,0.1)
# img = sess.run(img)
#u can find other methods to implement data augmentation like some predefined functions
#of cv2. I don't want to use functions wrt tf because a session would be neccessary adding
#extra much more overhead of time
image_batch.append(img)
label_batch.append(self.all_label_ids[i])
self.start += self.batch_size
# print("start")
# print self.start
# sess.close()
# end = time.time()
# print("use time")
# print(end-begin)
# print np.array(image_batch).size
return np.array(image_batch),np.array(label_batch)
#set your model
class Model(object):
def weight_variable(self,shape, stddev=0.1):
initial = tf.truncated_normal(shape, stddev=stddev)
return tf.Variable(initial)
def bias_variable(self,shape, bais=0.1):
initial = tf.constant(bais, shape=shape)
return tf.Variable(initial)
def conv2d(self,x, w):
return tf.nn.conv2d(x, w, [1, 1, 1, 1], 'SAME')
def max_pool_2x2(self,x):
return tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], 'SAME')
def max_pool_3x3(self,x):
return tf.nn.max_pool(x, [1, 3, 3, 1], [1, 2, 2, 1], 'SAME')
def avg_pool_3x3(self,x):
return tf.nn.avg_pool(x, [1, 3, 3, 1], [1, 2, 2, 1], 'SAME')
def bulid_model(self):
# network structure
# conv1
# self.train = tf.placeholder(tf.bool)
self.features = tf.placeholder(dtype=tf.float32, shape=(None,128, 128, 3))
# self.features = tf.cond(self.train,lambda: self.preprocess(self.rawimage),lambda: self.nopreprocess(self.rawimage))
# self.features = tf.placeholder(dtype=tf.float32,shape=(None,128,128,3),name='features-input')
self.labels = tf.placeholder(dtype=tf.int32,shape=(None),name='labels-input')
# self.labels = tf.one_hot(indices=self.labels,depth=80)
W_conv1 = self.weight_variable([5, 5, 3, 64], stddev=1e-4)
b_conv1 = self.bias_variable([64])
h_conv1 = tf.nn.relu(self.conv2d(self.features, W_conv1) + b_conv1)
h_pool1 = self.max_pool_3x3(h_conv1)
# norm1
norm1 = tf.nn.lrn(h_pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
# conv2
W_conv2 = self.weight_variable([5, 5, 64, 64], stddev=1e-2)
b_conv2 = self.bias_variable([64])
h_conv2 = tf.nn.relu(self.conv2d(norm1, W_conv2) + b_conv2)
# norm2
norm2 = tf.nn.lrn(h_conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
h_pool2 = self.max_pool_3x3(norm2)
# conv3
W_conv3 = self.weight_variable([5, 5, 64, 64], stddev=1e-2)
b_conv3 = self.bias_variable([64])
h_conv3 = tf.nn.relu(self.conv2d(h_pool2, W_conv3) + b_conv3)
h_pool3 = self.max_pool_3x3(h_conv3)
# fc1
W_fc1 = self.weight_variable([16 * 16 * 64, 128])
b_fc1 = self.bias_variable([128])
h_pool3_flat = tf.reshape(h_pool3, [-1, 16 * 16 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool3_flat, W_fc1) + b_fc1)
# introduce dropout
self.keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)
# fc2
W_fc2 = self.weight_variable([128, 80])
b_fc2 = self.bias_variable([80])
self.y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
#set train and validation process
from tqdm import tqdm
class Trainer(object):
def __init__(self,train_batcher,val_batcher,model):
self.train_batcher = train_batcher
self.val_batcher = val_batcher
self.model = model
self.model.bulid_model()
self.saver = tf.train.Saver()
def train(self):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
self.sess = tf.Session(config=config)
cross_entropy_mean = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits\
(labels=self.model.labels,logits=self.model.y_conv))
variables = tf.trainable_variables()
regularization_cost = tf.reduce_sum([tf.nn.l2_loss(v) for v in variables])
loss = cross_entropy_mean + regularization_cost
# one_hot_labels = tf.one_hot(indices=self.model.labels,depth=80,dtype=tf.int32)
accuracy = tf.reduce_mean(tf.cast(tf.nn.in_top_k\
(predictions=self.model.y_conv,\
targets=self.model.labels,k=1)\
,tf.float32))
optimizer = tf.train.AdamOptimizer(opt.lr)
train_op = optimizer.minimize(loss)
TRAINING_STEPS = len(self.train_batcher.all_img_paths)/opt.batch_size
self.sess.run(tf.global_variables_initializer())
best_accuracy = 0
for epoch in range(opt.max_epoch):
total_loss = 0
total_accuracy = 0
for i in tqdm(range(TRAINING_STEPS)):
# begin = time.time()
imgs,labels = self.train_batcher.get_data()
feed = {self.model.features:imgs,self.model.labels:labels,\
self.model.keep_prob:0.5}
_,loss_value,accuracy_value = self.sess.run([train_op,loss,accuracy],feed_dict=feed)
total_loss += loss_value
total_accuracy += accuracy_value
# end = time.time()
# print("train use time")
# print(end-begin)
if i%10 == 0:
print("iter[%d/%d]:loss=%.6f,accuracy=%.6f" % (i+1, TRAINING_STEPS, \
loss_value, \
accuracy_value))
print("epoch[%d/%d]:loss=%.6f,accuracy=%.6f"%(epoch+1,opt.max_epoch,\
total_loss/TRAINING_STEPS,\
total_accuracy/TRAINING_STEPS))
if epoch%opt.evaluation_period==0:
imgs,labels = self.val_batcher.get_data()
feed = {self.model.features: imgs, self.model.labels: labels, \
self.model.keep_prob: 1.0}
loss_value, accuracy_value = self.sess.run([loss, accuracy], feed_dict=feed)
print("val_loss = %.6f, val_accuracy = %.6f"%\
(loss_value,accuracy_value))
if best_accuracy<accuracy_value:
best_accuracy = accuracy_value
self.saver.save(self.sess,"bestmodel.ckpt")
'''if u have the ground truths of test dataset,the u can write like that'''
# img, labels = self.test_batcher.get_data()
# feed = {self.model.features: img, self.model.labels: labels, \
# self.model.keep_prob: 1.0}
# loss_value, accuracy_value = self.sess.run([loss, accuracy], feed_dict=feed)
self.sess.close()
def main(**kwargs):
opt.parse(kwargs)
train_batcher = Batcher(train=True, data_path=opt.data_path, json_path=opt.train_data_json, \
batch_size=opt.batch_size)
val_batcher = Batcher(train=False, data_path=opt.data_path, json_path=opt.val_data_json)
model = Model()
trainer = Trainer(train_batcher,val_batcher,model)
trainer.train()
if __name__ == "__main__":
import fire
fire.Fire()