This repository has been archived by the owner on Nov 20, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 240
/
train.py
200 lines (160 loc) · 9.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python
# -*- coding:UTF-8 -*-
import glob
import argparse
import os
import time
import sys
import tensorflow as tf
from itertools import count
from config import cfg
from model import RPN3D
from utils import *
from utils.kitti_loader import iterate_data, sample_test_data
from train_hook import check_if_should_pause
parser = argparse.ArgumentParser(description='training')
parser.add_argument('-i', '--max-epoch', type=int, nargs='?', default=160,
help='max epoch')
parser.add_argument('-n', '--tag', type=str, nargs='?', default='default',
help='set log tag')
parser.add_argument('-b', '--single-batch-size', type=int, nargs='?', default=2,
help='set batch size')
parser.add_argument('-l', '--lr', type=float, nargs='?', default=0.001,
help='set learning rate')
parser.add_argument('-al', '--alpha', type=float, nargs='?', default=1.0,
help='set alpha in los function')
parser.add_argument('-be', '--beta', type=float, nargs='?', default=10.0,
help='set beta in los function')
parser.add_argument('--output-path', type=str, nargs='?',
default='./predictions', help='results output dir')
parser.add_argument('-v', '--vis', type=bool, nargs='?', default=False,
help='set the flag to True if dumping visualizations')
args = parser.parse_args()
dataset_dir = cfg.DATA_DIR
train_dir = os.path.join(cfg.DATA_DIR, 'training')
val_dir = os.path.join(cfg.DATA_DIR, 'validation')
log_dir = os.path.join('./log', args.tag)
save_model_dir = os.path.join('./save_model', args.tag)
os.makedirs(log_dir, exist_ok=True)
os.makedirs(save_model_dir, exist_ok=True)
def main(_):
# TODO: split file support
with tf.Graph().as_default():
global save_model_dir
start_epoch = 0
global_counter = 0
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=cfg.GPU_MEMORY_FRACTION,
visible_device_list=cfg.GPU_AVAILABLE,
allow_growth=True)
config = tf.ConfigProto(
gpu_options=gpu_options,
device_count={
"GPU": cfg.GPU_USE_COUNT,
},
allow_soft_placement=True,
)
with tf.Session(config=config) as sess:
model = RPN3D(
cls=cfg.DETECT_OBJ,
single_batch_size=args.single_batch_size,
learning_rate=args.lr,
max_gradient_norm=5.0,
alpha=args.alpha,
beta=args.beta,
avail_gpus=cfg.GPU_AVAILABLE.split(',')
)
# param init/restore
if tf.train.get_checkpoint_state(save_model_dir):
print("Reading model parameters from %s" % save_model_dir)
model.saver.restore(
sess, tf.train.latest_checkpoint(save_model_dir))
start_epoch = model.epoch.eval() + 1
global_counter = model.global_step.eval() + 1
else:
print("Created model with fresh parameters.")
tf.global_variables_initializer().run()
# train and validate
is_summary, is_summary_image, is_validate = False, False, False
summary_interval = 5
summary_val_interval = 10
summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
# training
for epoch in range(start_epoch, args.max_epoch):
counter = 0
batch_time = time.time()
for batch in iterate_data(train_dir, shuffle=True, aug=True, is_testset=False, batch_size=args.single_batch_size * cfg.GPU_USE_COUNT, multi_gpu_sum=cfg.GPU_USE_COUNT):
counter += 1
global_counter += 1
if counter % summary_interval == 0:
is_summary = True
else:
is_summary = False
start_time = time.time()
ret = model.train_step( sess, batch, train=True, summary = is_summary )
forward_time = time.time() - start_time
batch_time = time.time() - batch_time
print('train: {} @ epoch:{}/{} loss: {:.4f} reg_loss: {:.4f} cls_loss: {:.4f} cls_pos_loss: {:.4f} cls_neg_loss: {:.4f} forward time: {:.4f} batch time: {:.4f}'.format(counter,epoch, args.max_epoch, ret[0], ret[1], ret[2], ret[3], ret[4], forward_time, batch_time))
with open('log/train.txt', 'a') as f:
f.write( 'train: {} @ epoch:{}/{} loss: {:.4f} reg_loss: {:.4f} cls_loss: {:.4f} cls_pos_loss: {:.4f} cls_neg_loss: {:.4f} forward time: {:.4f} batch time: {:.4f} \n'.format(counter, epoch, args.max_epoch, ret[0], ret[1], ret[2], ret[3], ret[4], forward_time, batch_time) )
#print(counter, summary_interval, counter % summary_interval)
if counter % summary_interval == 0:
print("summary_interval now")
summary_writer.add_summary(ret[-1], global_counter)
#print(counter, summary_val_interval, counter % summary_val_interval)
if counter % summary_val_interval == 0:
print("summary_val_interval now")
batch = sample_test_data(val_dir, args.single_batch_size * cfg.GPU_USE_COUNT, multi_gpu_sum=cfg.GPU_USE_COUNT)
ret = model.validate_step(sess, batch, summary=True)
summary_writer.add_summary(ret[-1], global_counter)
try:
ret = model.predict_step(sess, batch, summary=True)
summary_writer.add_summary(ret[-1], global_counter)
except:
print("prediction skipped due to error")
if check_if_should_pause(args.tag):
model.saver.save(sess, os.path.join(save_model_dir, 'checkpoint'), global_step=model.global_step)
print('pause and save model @ {} steps:{}'.format(save_model_dir, model.global_step.eval()))
sys.exit(0)
batch_time = time.time()
sess.run(model.epoch_add_op)
model.saver.save(sess, os.path.join(save_model_dir, 'checkpoint'), global_step=model.global_step)
# dump test data every 10 epochs
if ( epoch + 1 ) % 10 == 0:
# create output folder
os.makedirs(os.path.join(args.output_path, str(epoch)), exist_ok=True)
os.makedirs(os.path.join(args.output_path, str(epoch), 'data'), exist_ok=True)
if args.vis:
os.makedirs(os.path.join(args.output_path, str(epoch), 'vis'), exist_ok=True)
for batch in iterate_data(val_dir, shuffle=False, aug=False, is_testset=False, batch_size=args.single_batch_size * cfg.GPU_USE_COUNT, multi_gpu_sum=cfg.GPU_USE_COUNT):
if args.vis:
tags, results, front_images, bird_views, heatmaps = model.predict_step(sess, batch, summary=False, vis=True)
else:
tags, results = model.predict_step(sess, batch, summary=False, vis=False)
for tag, result in zip(tags, results):
of_path = os.path.join(args.output_path, str(epoch), 'data', tag + '.txt')
with open(of_path, 'w+') as f:
labels = box3d_to_label([result[:, 1:8]], [result[:, 0]], [result[:, -1]], coordinate='lidar')[0]
for line in labels:
f.write(line)
print('write out {} objects to {}'.format(len(labels), tag))
# dump visualizations
if args.vis:
for tag, front_image, bird_view, heatmap in zip(tags, front_images, bird_views, heatmaps):
front_img_path = os.path.join( args.output_path, str(epoch),'vis', tag + '_front.jpg' )
bird_view_path = os.path.join( args.output_path, str(epoch), 'vis', tag + '_bv.jpg' )
heatmap_path = os.path.join( args.output_path, str(epoch), 'vis', tag + '_heatmap.jpg' )
cv2.imwrite( front_img_path, front_image )
cv2.imwrite( bird_view_path, bird_view )
cv2.imwrite( heatmap_path, heatmap )
# execute evaluation code
cmd_1 = "./kitti_eval/launch_test.sh"
cmd_2 = os.path.join( args.output_path, str(epoch) )
cmd_3 = os.path.join( args.output_path, str(epoch), 'log' )
os.system( " ".join( [cmd_1, cmd_2, cmd_3] ) )
print('train done. total epoch:{} iter:{}'.format(
epoch, model.global_step.eval()))
# finallly save model
model.saver.save(sess, os.path.join(
save_model_dir, 'checkpoint'), global_step=model.global_step)
if __name__ == '__main__':
tf.app.run(main)