-
Notifications
You must be signed in to change notification settings - Fork 124
/
Copy pathutil.py
396 lines (322 loc) · 12.5 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import numpy as np
import os, sys, time
import imageio
import cv2
import shutil
from datetime import datetime
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
import socket
import contextlib
from matplotlib import cm
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.figure import Figure
import matplotlib as mpl
import subprocess
TINY_NUMBER = 1e-6 # float32 only has 7 decimal digits precision
torch.manual_seed(1234)
np.random.seed(0)
sigma2alpha = lambda sigma: 1. - torch.exp(-sigma)
def float2uint8(x):
return (255. * x).astype(np.uint8)
def uint82float(img):
return np.ascontiguousarray(img) / 255.
def skew(x):
if 'torch' in str(x.dtype):
return torch.tensor([[0, -x[2], x[1]],
[x[2], 0, -x[0]],
[-x[1], x[0], 0]],
device=x.device)
else:
return np.array([[0, -x[2], x[1]],
[x[2], 0, -x[0]],
[-x[1], x[0], 0]])
def img2mse(x, y, mask=None):
'''
:param x: img 1, [(...), 3]
:param y: img 2, [(...), 3]
:param mask: optional, [(...)]
:return: mse score
'''
if mask is None:
return torch.mean((x - y) * (x - y))
else:
return torch.sum((x - y) * (x - y) * mask.unsqueeze(-1)) / (torch.sum(mask) * x.shape[-1] + TINY_NUMBER)
def homogenize(coord):
coord = torch.cat((coord, torch.ones_like(coord[..., [0]])), -1)
return coord
def normalize_coords(coords, h, w, no_shift=False):
assert coords.shape[-1] == 2
if no_shift:
return coords / torch.tensor([w-1., h-1.], device=coords.device) * 2
else:
return coords / torch.tensor([w-1., h-1.], device=coords.device) * 2 - 1.
def denormalize_coords(coords, h, w, no_shift=False):
assert coords.shape[-1] == 2
if no_shift:
return coords * torch.tensor([w-1., h-1.], device=coords.device) / 2.
else:
return (coords + 1.) * torch.tensor([w-1., h-1.], device=coords.device) / 2.
def gen_grid(h, w, device, normalize=False, homogeneous=False):
if normalize:
lin_y = torch.linspace(-1., 1., steps=h, device=device)
lin_x = torch.linspace(-1., 1., steps=w, device=device)
else:
lin_y = torch.arange(0, h, device=device)
lin_x = torch.arange(0, w, device=device)
grid_y, grid_x = torch.meshgrid((lin_y, lin_x))
grid = torch.stack((grid_x, grid_y), -1)
if homogeneous:
grid = torch.cat([grid, torch.ones_like(grid[..., :1])], dim=-1)
return grid # [h, w, 2 or 3]
def gen_grid_np(h, w, normalize=False, homogeneous=False):
if normalize:
lin_y = np.linspace(-1., 1., num=h)
lin_x = np.linspace(-1., 1., num=w)
else:
lin_y = np.arange(0, h)
lin_x = np.arange(0, w)
grid_x, grid_y = np.meshgrid(lin_x, lin_y)
grid = np.stack((grid_x, grid_y), -1)
if homogeneous:
grid = np.concatenate([grid, np.ones_like(grid[..., :1])], axis=-1)
return grid # [h, w, 2 or 3]
def save_current_code(outdir):
now = datetime.now() # current date and time
date_time = now.strftime("%m_%d-%H:%M:%S")
src_dir = '.'
dst_dir = os.path.join(outdir, 'code', '{}'.format(date_time))
shutil.copytree(src_dir, dst_dir,
ignore=shutil.ignore_patterns(
'data*', 'OLD*',
'logs*', 'out*', 'runs*', '*.png', '*.mp4', '*__pycache__*',
'*.git*', '*.idea*', '*.zip', '*.jpg'))
def drawMatches(img1, img2, kp1, kp2, num_vis=200, idx_vis=None, radius=2, mask=None):
num_pts = len(kp1)
if idx_vis is None:
if num_vis < num_pts:
idx_vis = np.random.choice(num_pts, num_vis, replace=False)
else:
idx_vis = np.arange(num_pts)
kp1_vis = kp1[idx_vis]
kp2_vis = kp2[idx_vis]
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
img1 = float2uint8(img1)
img2 = float2uint8(img2)
center = np.median(kp1, axis=0)
set_max = range(128)
colors = {m: i for i, m in enumerate(set_max)}
colors = {m: (255 * np.array(plt.cm.hsv(i/float(len(colors))))[:3][::-1]).astype(np.int32)
for m, i in colors.items()}
if mask is not None:
ind = np.argsort(mask)[::-1]
kp1_vis = kp1_vis[ind]
kp2_vis = kp2_vis[ind]
mask = mask[ind]
for i, (pt1, pt2) in enumerate(zip(kp1_vis, kp2_vis)):
# random_color = tuple(np.random.randint(low=0, high=255, size=(3,)).tolist())
coord_angle = np.arctan2(pt1[1] - center[1], pt1[0] - center[0])
corr_color = np.int32(64 * coord_angle / np.pi) % 128
color = tuple(colors[corr_color].tolist())
if (pt1[0] <= w1 - 1) and (pt1[0] >= 0) and (pt1[1] <= h1 - 1) and (pt1[1] >= 0):
img1 = cv2.circle(img1, (int(pt1[0]), int(pt1[1])), radius, color, -1, cv2.LINE_AA)
if (pt2[0] <= w2 - 1) and (pt2[0] >= 0) and (pt2[1] <= h2 - 1) and (pt2[1] >= 0):
if mask is not None and mask[i]:
img2 = cv2.drawMarker(img2, (int(pt2[0]), int(pt2[1])), color, markerType=cv2.MARKER_CROSS,
markerSize=int(5*radius), thickness=int(radius/2), line_type=cv2.LINE_AA)
else:
img2 = cv2.circle(img2, (int(pt2[0]), int(pt2[1])), radius, color, -1, cv2.LINE_AA)
out = np.concatenate([img1, img2], axis=1)
return out
def get_vertical_colorbar(h, vmin, vmax, cmap_name='jet', label=None, cbar_precision=2):
'''
:param w: pixels
:param h: pixels
:param vmin: min value
:param vmax: max value
:param cmap_name:
:param label
:return:
'''
fig = Figure(figsize=(2, 8), dpi=100)
fig.subplots_adjust(right=1.5)
canvas = FigureCanvasAgg(fig)
# Do some plotting.
ax = fig.add_subplot(111)
cmap = cm.get_cmap(cmap_name)
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
tick_cnt = 6
tick_loc = np.linspace(vmin, vmax, tick_cnt)
cb1 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
ticks=tick_loc,
orientation='vertical')
tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc]
if cbar_precision == 0:
tick_label = [x[:-2] for x in tick_label]
cb1.set_ticklabels(tick_label)
cb1.ax.tick_params(labelsize=18, rotation=0)
if label is not None:
cb1.set_label(label)
fig.tight_layout()
canvas.draw()
s, (width, height) = canvas.print_to_buffer()
im = np.frombuffer(s, np.uint8).reshape((height, width, 4))
im = im[:, :, :3].astype(np.float32) / 255.
if h != im.shape[0]:
w = int(im.shape[1] / im.shape[0] * h)
im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA)
return im
def colorize_np(x, cmap_name='jet', mask=None, range=None, append_cbar=False, cbar_in_image=False, cbar_precision=2):
'''
turn a grayscale image into a color image
:param x: input grayscale, [H, W]
:param cmap_name: the colorization method
:param mask: the mask image, [H, W]
:param range: the range for scaling, automatic if None, [min, max]
:param append_cbar: if append the color bar
:param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
:return: colorized image, [H, W]
'''
if range is not None:
vmin, vmax = range
elif mask is not None:
# vmin, vmax = np.percentile(x[mask], (2, 100))
vmin = np.min(x[mask][np.nonzero(x[mask])])
vmax = np.max(x[mask])
# vmin = vmin - np.abs(vmin) * 0.01
x[np.logical_not(mask)] = vmin
# print(vmin, vmax)
else:
vmin, vmax = np.percentile(x, (1, 100))
vmax += TINY_NUMBER
x = np.clip(x, vmin, vmax)
x = (x - vmin) / (vmax - vmin)
# x = np.clip(x, 0., 1.)
cmap = cm.get_cmap(cmap_name)
x_new = cmap(x)[:, :, :3]
if mask is not None:
mask = np.float32(mask[:, :, np.newaxis])
x_new = x_new * mask + np.ones_like(x_new) * (1. - mask)
cbar = get_vertical_colorbar(h=x.shape[0], vmin=vmin, vmax=vmax, cmap_name=cmap_name, cbar_precision=cbar_precision)
if append_cbar:
if cbar_in_image:
x_new[:, -cbar.shape[1]:, :] = cbar
else:
x_new = np.concatenate((x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1)
return x_new
else:
return x_new
# tensor
def colorize(x, cmap_name='jet', mask=None, range=None, append_cbar=False, cbar_in_image=False):
device = x.device
x = x.cpu().numpy()
if mask is not None:
mask = mask.cpu().numpy() > 0.99
x = colorize_np(x, cmap_name, mask, range, append_cbar, cbar_in_image)
x = torch.from_numpy(x).to(device)
return x
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:, :, ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
assert flow_uv.ndim == 3 or flow_uv.ndim == 4, 'input flow must have three or four dimensions'
assert flow_uv.shape[-1] == 2, 'input flow must have shape [..., H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[..., 0]
v = flow_uv[..., 1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
if flow_uv.ndim == 4:
return np.stack([flow_uv_to_colors(u_, v_, convert_to_bgr) for (u_, v_) in zip(u, v)], axis=0)
else:
return flow_uv_to_colors(u, v, convert_to_bgr)