forked from HuberTRoy/leetCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MinimumPathSum.py
62 lines (47 loc) · 1.75 KB
/
MinimumPathSum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
"""
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum
给一个二维数组,里面全是非负整数,找到一条左上到右下花费最小的路线。
思路:
当前点只要加 up 和 left 中较小的一个即可。
效率 O(n)
为了判断边界直接顺着思路写了。优化的话可以先把最上面的一排按其左的数相加,最左边的一列按其上面的数相加。
然后从 [1,1] 开始,这样不需要判断边界,写法上可以少点判断效率能提高10+ms。
测试地址:
https://leetcode.com/problems/minimum-path-sum/description/
"""
class Solution(object):
def get_up_left(self, x, y):
if y-1 < 0:
up = False
else:
up = (x, y-1)
if x-1 < 0:
left = False
else:
left = (x-1,y)
# up and left
return (up, left)
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
for i in range(len(grid)):
for j in range(len(grid[0])):
xy = self.get_up_left(j, i)
up = grid[xy[0][1]][xy[0][0]] if xy[0] else float('inf')
left = grid[xy[1][1]][xy[1][0]] if xy[1] else float('inf')
if up == float('inf') and left == float('inf'):
continue
grid[i][j] = grid[i][j] + min(up, left)
return grid[-1][-1]