-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNetworks.py
207 lines (163 loc) · 7.94 KB
/
Networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch.nn as nn
import torch.nn.functional as F
import torch
from einops import rearrange, repeat, reduce
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu" )
def paramsInit(net):
if isinstance(net, nn.Conv2d):
nn.init.xavier_uniform_(net.weight.data)
nn.init.constant_(net.bias.data, 0.0)
elif isinstance(net, nn.BatchNorm2d):
net.weight.data.fill_(1)
net.bias.data.zero_()
elif isinstance(net, nn.Linear):
net.weight.data.normal_(0, 0.01)
net.bias.data.zero_()
class CoConvBlock(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size):
super(CoConvBlock, self).__init__()
self.in_dim=in_dim
self.out_dim=out_dim
self.BN=nn.BatchNorm1d(in_dim)
self.BN2=nn.BatchNorm1d(in_dim)
self.Linear=nn.Sequential(nn.Conv1d(in_dim,out_dim,kernel_size=1)) #,nn.PReLU()
self.Conv2D_DW=nn.Sequential(nn.Conv2d(out_dim,out_dim,kernel_size=kernel_size,padding=kernel_size//2,groups=out_dim))
self.ACT=nn.PReLU()
self.ACT2=nn.PReLU()
self.Linear_sim = nn.Sequential(nn.Conv1d(out_dim, out_dim, kernel_size=1))
self.score_linear = nn.Sequential(nn.Linear(out_dim, out_dim, bias=True), nn.Sigmoid())
self.final_XH=nn.Sequential( nn.Conv1d(in_dim+out_dim, out_dim, kernel_size=1),nn.PReLU())
paramsInit(self)
def forward(self, X_in:torch.Tensor, H_in:torch.Tensor):
b,c,h,w=X_in.shape
_,_,n=H_in.shape
X_in_reshape = X_in.reshape([b,c,-1])
X_in_BN=self.BN(X_in_reshape)
H_in_BN=self.BN2(H_in)
# Neighbor-wise Linear Transformation
X=self.Linear(X_in_BN)
H=self.Linear(H_in_BN)
# Temporary Vector
X_mean=torch.mean(X,dim=-1,keepdim=True)
X_sim=self.Linear_sim(X_mean)
H_sim=self.Linear_sim(H)
H_sim2=torch.cat([X_sim,H_sim],dim=-1)
X_sim=rearrange(X_sim,'b c n -> b n c')
similarity = torch.sigmoid( torch.matmul(X_sim,H_sim2) )
similarity = torch.softmax(similarity, dim=-1) #b*81*5
# similarity =similarity/(torch.sum(similarity, dim=-1,keepdim=True)+1e-15) #b*81*5
# Neighbor Aggregation
X_aggre = torch.matmul(similarity,rearrange(torch.cat([X_mean,H],dim=-1),'b c n -> b n c'))
# Feature Fusion
score = self.score_linear(X_aggre).permute([0,2,1]).unsqueeze(-1)
X = self.Conv2D_DW(X.reshape([b, -1, h, w]))
X=score* X_aggre.reshape([b, -1, 1, 1]) +(1-score)*X
X=self.ACT(X)
H=self.ACT2(H)
# Feature Concatenation and Linear Transformation
H_out=self.final_XH(torch.cat([H,H_in_BN],dim=1))
X_out=self.final_XH(torch.cat([X.reshape([b,-1,h*w]),X_in_BN],dim=1)).reshape([b,-1,h,w])
return X_out, H_out
class CNCMN(nn.Module):
def __init__(self, height: int, width: int, changel: int, class_count: int,learning_rate:float=0.001,classifier:str="softmax",netDepth:int=5):
super(CNCMN, self).__init__()
self.class_count = class_count # 类别数
self.channel = changel# 网络输入数据大小
self.height = height
self.width = width
self.protoLen=64 # 胶囊向量长度
self.learning_rate = learning_rate
self.classifier=classifier
self.netDepth=netDepth
# overall prototypes
Prototypes=torch.zeros([class_count,self.protoLen],dtype=torch.float,device=device,requires_grad=True)
self.register_buffer('Prototypes', Prototypes)
self.softmaxClassifier = nn.Sequential(nn.Linear(self.protoLen, self.class_count))
self.mixconvList=nn.Sequential(CoConvBlock(changel,64,3),
CoConvBlock(64,64,3),
CoConvBlock(64,64,3),
CoConvBlock(64,64,3),
CoConvBlock(64,64,3))
self.embedding=nn.Sequential(nn.BatchNorm2d(64),
nn.Conv2d(64,self.protoLen,kernel_size=3),
nn.Tanh(),
nn.AdaptiveAvgPool2d(1))
paramsInit(self)
def unitize(self,embeddings):
squared_norm = (embeddings ** 2).sum(dim=-1, keepdim=True)
E_hat = embeddings / (torch.sqrt(squared_norm + 1e-15))
return E_hat
def updataPrototypes(self, embeddings, labels, ):
'''
update prototypes
:param embeddings:
:return:
'''
# step 1: unitize embeddings
# E_hat=self.unitize(embeddings)
E_hat=embeddings
# step 2: similarity
Prototypes = self.Prototypes.detach()
S = torch.matmul(E_hat, Prototypes.t())
# step 3: update prototypes
A=(torch.clamp(1-S,0,2)*labels).t()
D_hat = torch.diag(1. / (A.sum(1) + 1e-15))
batchCentroids = torch.matmul(torch.matmul(D_hat, A), E_hat)
# self.batchCentroids = batchCentroids = self.unitize(batchCentroids)
self.Prototypes = self.unitize(self.learning_rate* 10 * batchCentroids + Prototypes)
# # loss
predict = self.metricClassifier(embeddings)
loss = self.metricLoss(predict, labels)
return predict, loss
def metricLoss(self,predict,labels):
inter_similarity = F.relu(torch.matmul(self.Prototypes, self.Prototypes.t())) # .detach()
left = F.relu(1 - predict, inplace=True) ** 2
right = F.relu(predict , inplace=True) ** 2
margin_loss = left * labels + right * (1. - labels) *0.5 #/(self.class_count-1)
inter_weights = torch.sum(inter_similarity, dim=0, keepdim=True)
loss = (margin_loss * inter_weights).mean()
return loss
def metricClassifier(self, embeddings):
S = torch.matmul(embeddings, self.Prototypes.t())
return S
def softmax_loss(self,embeddings,labels):
predict= self.softmaxClassifier(embeddings)
loss=F.cross_entropy(predict,torch.argmax(labels,dim=-1))
return predict, loss
def getCapsules(self):
return self.Prototypes
def forward(self, data: torch.Tensor, labels:torch.Tensor, subgraphs:torch.Tensor):
'''
:param x: B*HW*C
:return: probability_map H*W*C
'''
X=rearrange(data,'b h w c -> b c h w')
H=rearrange(subgraphs,'b n c -> b c n')
## Feature Extraction
for i in range(self.netDepth): X,H=self.mixconvList[i](X,H)
## Metric Space Embedding
embeddings = self.embedding(X).squeeze(-1).squeeze(-1)
## prediction and loss
pre_and_loss=[]
if self.classifier=="softmax":
softmaxLoss = 0
if labels is not None:
softmaxPredict, softmaxLoss = self.softmax_loss(embeddings, labels)
else:
softmaxPredict = self.softmaxClassifier(embeddings)
pre_and_loss = [softmaxPredict, softmaxLoss]
elif self.classifier=="metric":
metricLoss = 0
embeddings=self.unitize(embeddings)
if labels is not None and self.training:
metricPredict, metricLoss=self.updataPrototypes(embeddings,labels)
elif labels is not None:
metricPredict=self.metricClassifier(embeddings)
metricLoss = self.metricLoss(metricPredict,labels)
else:
metricPredict = self.metricClassifier(embeddings)
pre_and_loss = [metricPredict, metricLoss]
return pre_and_loss,embeddings
if __name__=='__main__':
SC=CNCMN(10,10,16)