forked from yifita/deep_cage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deformer_3d.py
382 lines (321 loc) · 18.9 KB
/
deformer_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
from __future__ import print_function
from pprint import pprint
import shutil
import datetime
from glob import glob
import torch
import torch.nn as nn
import torch.utils.data
import numpy as np
import pymesh
from pytorch_points.network.geo_operations import mean_value_coordinates_3D, edge_vertex_indices, furthest_point_sample
from pytorch_points.misc import logger
from pytorch_points.utils.geometry_utils import build_gemm, Mesh, get_edge_points
from pytorch_points.utils.pc_utils import load, save_ply, center_bounding_box, read_ply, normalize_to_box
from pytorch_points.utils.pytorch_utils import weights_init, check_values, save_network, load_network, save_grad, saved_variables, \
clamp_gradient_norm, linear_loss_weight, tolerating_collate, clamp_gradient
import os
import losses
from datasets import PairedSurreal
from common import build_dataset, log_outputs, deform_with_MVC, read_trimesh
import network2 as networks
def test(net=None, subdir="test"):
opt.phase = "test"
if isinstance(opt.target_model, str):
opt.target_model = [opt.target_model]
if net is None:
states = torch.load(opt.ckpt)
if "states" in states:
states = states["states"]
if opt.template:
cage_shape, cage_face = read_trimesh(opt.template)
cage_shape = torch.from_numpy(cage_shape[:,:3]).unsqueeze(0).float()
cage_face = torch.from_numpy(cage_face).unsqueeze(0).long()
states["template_vertices"] = cage_shape.transpose(1,2)
states["template_faces"] = cage_face
if opt.source_model:
source_shape, source_face = read_trimesh(opt.source_model)
source_shape = torch.from_numpy(source_shape[:,:3]).unsqueeze(0).float()
source_face = torch.from_numpy(source_face).unsqueeze(0).long()
states["source_vertices"] = source_shape.transpose(1,2)
states["source_faces"] = source_shape
net = networks.FixedSourceDeformer(opt, 3, opt.num_point, bottleneck_size=opt.bottleneck_size,
template_vertices=states["template_vertices"], template_faces=states["template_faces"],
source_vertices=states["source_vertices"], source_faces=states["source_faces"]).cuda()
load_network(net, states)
net = net.cuda()
net.eval()
else:
net.eval()
print(net)
test_output_dir = os.path.join(opt.log_dir, subdir)
os.makedirs(test_output_dir, exist_ok=True)
with torch.no_grad():
for target_model in opt.target_model:
assert(os.path.isfile(target_model))
target_face = None
target_shape, target_face = read_trimesh(target_model)
# target_shape = read_ply(target_model)[:,:3]
# target_shape, _, scale = normalize_to_box(target_shape)
# normalize acording to height y axis
# target_shape = target_shape/2*1.7
target_shape = torch.from_numpy(target_shape[:,:3]).cuda().float().unsqueeze(0)
if target_face is None:
target_face = net.source_faces
else:
target_face = torch.from_numpy(target_face).cuda().long().unsqueeze(0)
t_filename = os.path.splitext(os.path.basename(target_model))[0]
source_mesh = net.source_vertices.transpose(1,2).detach()
source_face = net.source_faces.detach()
# furthest sampling
target_shape_sampled = furthest_point_sample(target_shape, net.source_vertices.shape[2], NCHW=False)[1]
# target_shape_sampled = (target_shape[:, np.random.permutation(target_shape.shape[1]), :]).contiguous()
outputs = net(target_shape_sampled.transpose(1,2), None, cage_only=True)
# deformed = outputs["deformed"]
deformed = deform_with_MVC(outputs["cage"], outputs["new_cage"],
outputs["cage_face"].expand(outputs["cage"].shape[0], -1, -1),
source_mesh)
b = 0
save_ply(target_shape_sampled[b].cpu().numpy(), os.path.join(opt.log_dir, subdir, "template-{}-Sb.pts".format(t_filename)))
pymesh.save_mesh_raw(os.path.join(opt.log_dir, subdir, "template-{}-Sa.ply".format(t_filename)),
source_mesh[0].detach().cpu(), source_face[0].detach().cpu())
pymesh.save_mesh_raw(os.path.join(opt.log_dir, subdir, "template-{}-Sb.ply".format(t_filename)),
target_shape[b].detach().cpu(), target_face[b].detach().cpu())
pymesh.save_mesh_raw(os.path.join(opt.log_dir, subdir, "template-{}-Sab.ply".format(t_filename)),
deformed[b].detach().cpu(), source_face[b].detach().cpu())
pymesh.save_mesh_raw(os.path.join(opt.log_dir, subdir, "template-{}-cage1.ply".format(t_filename)),
outputs["cage"][b].detach().cpu(), outputs["cage_face"][b].detach().cpu())
pymesh.save_mesh_raw(os.path.join(opt.log_dir, subdir, "template-{}-cage2.ply".format(t_filename)),
outputs["new_cage"][b].detach().cpu(), outputs["cage_face"][b].detach().cpu())
PairedSurreal.render_result(test_output_dir)
def test_all(net=None, subdir="test"):
opt.phase = "test"
dataset = build_dataset(opt)
if net is None:
source_shape = dataset.mesh_vertex.unsqueeze(0).to(dtype=torch.float)
source_face = dataset.mesh_face.unsqueeze(0)
cage_shape = dataset.cage_vertex.unsqueeze(0).to(dtype=torch.float)
cage_face = dataset.cage_face.unsqueeze(0)
net = networks.FixedSourceDeformer(opt, 3, opt.num_point, bottleneck_size=opt.bottleneck_size,
template_vertices=cage_shape.transpose(1,2), template_faces=cage_face,
source_vertices=source_shape.transpose(1,2), source_faces=source_face).cuda()
load_network(net, opt.ckpt)
net.eval()
else:
net.eval()
print(net)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, drop_last=False,
num_workers=3, worker_init_fn=lambda id: np.random.seed(np.random.get_state()[1][0] + id))
chamfer_distance = losses.LabeledChamferDistance(beta=0, gamma=1)
mse_distance = torch.nn.MSELoss()
avg_CD = 0
avg_EMD = 0
test_output_dir = os.path.join(opt.log_dir, subdir)
os.makedirs(test_output_dir, exist_ok=True)
with open(os.path.join(test_output_dir, "eval.txt"), "w") as f:
with torch.no_grad():
source_mesh = net.source_vertices.transpose(1,2).detach()
source_face = net.source_faces.detach()
for i, data in enumerate(dataloader):
data = dataset.uncollate(data)
target_shape, target_filename = data["target_shape"], data["target_file"]
sample_idx = None
if "sample_idx" in data:
sample_idx = data["sample_idx"]
outputs = net(target_shape.transpose(1,2), sample_idx)
deformed = outputs["deformed"]
deformed = deform_with_MVC(outputs["cage"], outputs["new_cage"],
outputs["cage_face"].expand(outputs["cage"].shape[0], -1, -1),
source_mesh)
for b in range(outputs["deformed"].shape[0]):
t_filename = os.path.splitext(target_filename[b])[0]
target_shape_np = target_shape.detach().cpu()[b].numpy()
if data["target_face"] is not None and data["target_mesh"] is not None:
pymesh.save_mesh_raw(os.path.join(opt.log_dir, subdir, "template-{}-Sa.ply".format(t_filename)),
source_mesh[0].detach().cpu(), source_face[0].detach().cpu())
pymesh.save_mesh_raw(os.path.join(opt.log_dir, subdir, "template-{}-Sb.ply".format(t_filename)),
data["target_mesh"][b].detach().cpu(), data["target_face"][b].detach().cpu())
pymesh.save_mesh_raw(os.path.join(opt.log_dir, subdir, "template-{}-Sab.ply".format(t_filename)),
deformed[b].detach().cpu(), source_face[b].detach().cpu())
else:
save_ply(source_mesh[0].detach().cpu(), os.path.join(opt.log_dir, subdir,"template-{}-Sa.ply".format(t_filename)))
save_ply(target_shape[b].detach().cpu(), os.path.join(opt.log_dir, subdir,"template-{}-Sb.ply".format(t_filename)),
normals=data["target_normals"][b].detach().cpu())
save_ply(deformed[b].detach().cpu(), os.path.join(opt.log_dir, subdir,"template-{}-Sab.ply".format(t_filename)),
normals=data["target_normals"][b].detach().cpu())
pymesh.save_mesh_raw(os.path.join(opt.log_dir, subdir, "template-{}-cage1.ply".format(t_filename)),
outputs["cage"][b].detach().cpu(), outputs["cage_face"][b].detach().cpu())
pymesh.save_mesh_raw(os.path.join(opt.log_dir, subdir, "template-{}-cage2.ply".format(t_filename)),
outputs["new_cage"][b].detach().cpu(), outputs["cage_face"][b].detach().cpu())
log_str = "{}/{} {}".format(i, len(dataloader), t_filename)
print(log_str)
f.write(log_str+"\n")
dataset.render_result(test_output_dir)
def train():
dataset = build_dataset(opt)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, drop_last=True,
num_workers=0, worker_init_fn=lambda id: np.random.seed(np.random.get_state()[1][0] + id))
source_shape = dataset.mesh_vertex.unsqueeze(0).to(dtype=torch.float)
source_face = dataset.mesh_face.unsqueeze(0)
cage_shape = dataset.cage_vertex.unsqueeze(0).to(dtype=torch.float)
cage_face = dataset.cage_face.unsqueeze(0)
mesh = Mesh(vertices=cage_shape[0], faces=cage_face[0])
build_gemm(mesh, cage_face[0])
cage_edge_points = torch.from_numpy(get_edge_points(mesh)).cuda()
cage_edges = edge_vertex_indices(cage_face[0])
# network
net = networks.FixedSourceDeformer(opt, 3, opt.num_point, bottleneck_size=opt.bottleneck_size,
template_vertices=cage_shape.transpose(1,2), template_faces=cage_face,
source_vertices=source_shape.transpose(1,2), source_faces=source_face).cuda()
print(net)
net.apply(weights_init)
if opt.ckpt:
load_network(net, opt.ckpt)
net.train()
all_losses = losses.AllLosses(opt)
# optimizer
optimizer = torch.optim.Adam([
{'params': net.nd_decoder.parameters()},
{"params": net.encoder.parameters()}],lr=opt.lr)
# train
os.makedirs(opt.log_dir, exist_ok=True)
shutil.copy2(__file__, opt.log_dir)
shutil.copy2(os.path.join(os.path.dirname(__file__), "network2.py"), opt.log_dir)
shutil.copy2(os.path.join(os.path.dirname(__file__), "common.py"), opt.log_dir)
shutil.copy2(os.path.join(os.path.dirname(__file__), "losses.py"), opt.log_dir)
shutil.copy2(os.path.join(os.path.dirname(__file__), "datasets.py"), opt.log_dir)
pymesh.save_mesh_raw(os.path.join(opt.log_dir,"t{:06d}_Sa.ply".format(0)),
net.source_vertices[0].transpose(0,1).detach().cpu().numpy(),
net.source_faces[0].detach().cpu())
pymesh.save_mesh_raw(os.path.join(opt.log_dir,"t{:06d}_template.ply".format(0)),
net.template_vertices[0].transpose(0,1).detach().cpu().numpy(),
net.template_faces[0].detach().cpu())
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, max(int(opt.nepochs*0.75),1), gamma=0.5, last_epoch=-1)
# train
net.train()
t = 0
start_epoch = 0
warmed_up = False
mvc_weight = opt.mvc_weight
opt.mvc_weight = 0
os.makedirs(opt.log_dir, exist_ok=True)
running_avg_loss = -1
log_file = open(os.path.join(opt.log_dir, "loss_log.txt"), "a")
log_interval = min(max(len(dataloader)//5, 50), 200)
save_interval = max(opt.nepochs//10, 1)
with torch.autograd.detect_anomaly():
if opt.epoch:
start_epoch = opt.epoch % opt.nepochs
t += start_epoch*len(dataloader)
for epoch in range(start_epoch, opt.nepochs):
for epoch_t, data in enumerate(dataloader):
progress = epoch_t/len(dataloader)+epoch
warming_up = progress < opt.warmup_epochs
if (opt.deform_template or opt.optimize_template) and (progress >= opt.warmup_epochs) and (not warmed_up):
if opt.deform_template:
optimizer.add_param_group({'params': net.nc_decoder.parameters(), 'lr': 0.1*opt.lr})
if opt.optimize_template:
optimizer.add_param_group({'params': net.template_vertices, 'lr': 0.1*opt.lr})
warmed_up = True
# start to compute mvc weight
opt.mvc_weight = mvc_weight
save_network(net, opt.log_dir, network_label="net", epoch_label="warmed_up")
############# get data ###########
data = dataset.uncollate(data)
data["cage_edge_points"] = cage_edge_points
data["cage_edges"] = cage_edges
data["source_shape"] = net.source_vertices.detach()
data["source_face"] = net.source_faces.detach()
############# run network ###########
optimizer.zero_grad()
target_shape_t = data["target_shape"].transpose(1,2)
sample_idx = None
if "sample_idx" in data:
sample_idx = data["sample_idx"]
if data["source_normals"] is not None:
data["source_normals"] = torch.gather(data["source_normals"], 1, sample_idx.unsqueeze(-1).expand(-1,-1,3))
outputs = net(target_shape_t, sample_idx)
if opt.sfnormal_weight > 0 and ("source_mesh" in data and "source_mesh" is not None):
if outputs["deformed"].shape[1] == data["source_mesh"].shape[1]:
outputs["deformed_hr"] = outputs["deformed"]
else:
outputs["deformed_hr"] = deform_with_MVC(
outputs["cage"].expand(data["source_mesh"].shape[0], -1, -1).detach(),
outputs["new_cage"],
outputs["cage_face"].expand(data["source_mesh"].shape[0], -1, -1), data["source_mesh"])
data["source_shape"] = outputs["source_shape"]
############# get losses ###########
current_loss = all_losses(data, outputs, progress)
loss_sum = torch.sum(torch.stack([v for v in current_loss.values()], dim=0))
if running_avg_loss < 0:
running_avg_loss = loss_sum
else:
running_avg_loss = running_avg_loss + (loss_sum.item() - running_avg_loss)/(t+1)
if (t % log_interval == 0) or (loss_sum > 10*running_avg_loss):
log_str = "warming up {} e {:03d} t {:05d}: {}".format(not warmed_up, epoch, t,
", ".join(["{} {:.3g}".format(k, v.mean().item()) for k, v in current_loss.items()]))
print(log_str)
log_file.write(log_str+"\n")
log_outputs(opt, t, outputs, data)
# save_ply(data["target_shape"][0].detach().cpu().numpy(), os.path.join(opt.log_dir,"step-{:06d}-Sb.ply".format(t)))
# save_ply(outputs["deformed"][0].detach().cpu().numpy(), os.path.join(opt.log_dir,"step-{:06d}-Sab.ply".format(t)))
# write_trimesh(os.path.join(opt.log_dir, "step-{:06d}-cage1.ply".format(t)),
# outputs["cage"][0].detach().cpu(), outputs["cage_face"][0].detach().cpu(), binary=True)
# write_trimesh(os.path.join(opt.log_dir, "step-{:06d}-cage2.ply".format(t)),
# outputs["new_cage"][0].detach().cpu(), outputs["cage_face"][0].detach().cpu(), binary=True)
if loss_sum > 100*running_avg_loss:
logger.info("loss ({}) > 10*running_average_loss ({}). Skip without update.".format(loss_sum, 5*running_avg_loss))
torch.cuda.empty_cache()
continue
loss_sum.backward()
if opt.alternate_cd:
optimize_C = (progress > opt.warmup_epochs) and (t % (opt.c_step+opt.d_step)) > opt.d_step
if optimize_C:
net.nd_decoder.zero_grad()
net.encoder.zero_grad()
else:
try:
net.nc_decoder.zero_grad()
except AttributeError:
net.template_vertices.grad.zero_()
# clamp_gradient_norm(net, 1)
optimizer.step()
if (t + 1) % 500 == 0:
save_network(net, opt.log_dir, network_label="net", epoch_label="latest")
t += 1
if (epoch + 1) % save_interval == 0:
save_network(net, opt.log_dir, network_label="net", epoch_label=epoch)
scheduler.step()
log_file.close()
save_network(net, opt.log_dir, network_label="net", epoch_label="final")
test_all(net=net)
if __name__ == "__main__":
from option import DeformationOptions
parser = DeformationOptions()
opt = parser.parse()
# reproducability
torch.backends.cudnn.benchmark = False # type: ignore
torch.manual_seed(24)
torch.backends.cudnn.deterministic = True # type: ignore
np.random.seed(24)
torch.cuda.set_device("cuda:0") # type: ignore
if opt.phase == "train":
if opt.ckpt is not None:
opt.log_dir = os.path.dirname(opt.ckpt)
else:
opt.log_dir = os.path.join(opt.log_dir, "-".join(filter(None, [os.path.basename(__file__)[:-3],
datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S"),
opt.name])))
else:
opt.log_dir = os.path.dirname(opt.ckpt)
if opt.phase == "test":
if opt.target_model is None:
test_all(subdir=opt.subdir)
else:
test(subdir=opt.subdir)
else:
os.makedirs(opt.log_dir, exist_ok=True)
log_file = open(os.path.join(opt.log_dir, "loss_log.txt"), "a")
parser.print_options(opt, log_file)
log_file.close()
train()