-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathChmmGmm.m
232 lines (211 loc) · 7.02 KB
/
ChmmGmm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
% SUMMARY: Train Gauss-HMM model
% AUTHOR: QIUQIANG KONG
% Created: 17-11-2015
% Modified: 25-11-2015 Add annotation
% -----------------------------------------------------------
% input:
% Data cell of data
% state_num state num
% mix_num multinominal num
% varargin input:
% p_start0 p(z1), size: Q*1
% A p(zn|zn-1), transform matrix, size: Q*Q
% phi0: emission probability para
% B size: M*Q
% mu size: p*M*Q
% Sigma size: p*p*M*Q
% iter_num how many time the EM should run (default: 100)
% converge (default: 1+1e-4)
% output
% p_start p(z1), dim 1: Q
% A p(zn|zn-1), transform matrix, size: Q*Q
% phi0: emission probability para
% B size: M*Q
% mu size: p*M*Q
% Sigma size: p*p*M*Q
% ===========================================================
function [p_start, A, phi, loglik] = ChmmGmm(Data, state_num, mix_num, varargin)
% Init Paras
Q = state_num;
M = mix_num;
p = size(Data{1},2);
for i1 = 1:2:length(varargin)
switch varargin{i1}
case 'p_start0'
p_start = varargin{i1+1};
case 'A0'
A = varargin{i1+1};
case 'phi0'
phi = varargin{i1+1};
case 'cov_type'
cov_type = varargin{i1+1};
case 'cov_thresh'
cov_thresh = varargin{i1+1};
case 'iter_num'
iter_num = varargin{i1+1};
case 'converge'
converge = varargin{i1+1};
end
end
if (~exist('p_start'))
tmp = rand(1,Q);
p_start = tmp / sum(tmp);
end
if (~exist('A'))
tmp = rand(Q,Q);
A = bsxfun(@rdivide, tmp, sum(tmp,2));
end
if (~exist('phi'))
Xall = cell2mat(Data');
[prior_, mu_, Sigma_] = Gmm(Xall, M*Q, 'diag');
tmp = reshape(prior_,M,Q);
phi.B = bsxfun(@rdivide, tmp, sum(tmp, 1));
phi.mu = reshape(mu_,p,M,Q);
phi.Sigma = reshape(Sigma_,p,p,M,Q);
end
if (~exist('iter_num'))
iter_num = 100; % the maximum of EM iteration
end
if (~exist('cov_type'))
cov_type = 'diag'; % 'full' or 'diag'
end
if (~exist('cov_thresh'))
cov_thresh = 1e-4; % the thresh of cov
end
if (~exist('converge'))
converge = 1 + 1e-4;
end
pre_ll = -inf;
obj_num = length(Data);
for k = 1:iter_num
% E STEP
for r = 1:obj_num
logp_xn_given_zn = Gmm_logp_xn_given_zn(Data{r}, phi);
[LogGamma{r}, LogKsi{r}, Loglik{r}] = LogForwardBackward(logp_xn_given_zn, p_start, A);
logp_xn_given_vn = Get_logp_xn_given_vn(Data{r}, phi);
LogIta{r} = CalculateLogIta(logp_xn_given_vn, p_start, A, phi);
end
% convert loggamma to gamma, logksi to ksi, substract the max
[Gamma, Ksi] = UniformLogGammaKsi(LogGamma, LogKsi);
% convert logita to ita, substract the max
Ita = UniformLogIta(LogIta);
% M STEP common
[p_start, A] = M_step_common(Gamma, Ksi);
% M STEP for Gmm
% update B
B_nomer = zeros(M,Q);
B_denom = zeros(1,Q);
for r = 1:obj_num
B_nomer = B_nomer + reshape(sum(Ita{r},1), M, Q);
B_denom = B_denom + reshape(sum(sum(Ita{r},2),1), 1, Q);
end
phi.B = bsxfun(@rdivide, B_nomer, B_denom);
% update mu, Sigma
mu_numer = zeros(p,M,Q);
mu_denom = zeros(M,Q);
for q = 1:Q
for m = 1:M
mu_numer = zeros(p,1);
mu_denom = 0;
for r = 1:obj_num
mu_numer = mu_numer + Data{r}' * Ita{r}(:,m,q);
mu_denom = mu_denom + sum(Ita{r}(:,m,q));
end
phi.mu(:,m,q) = mu_numer / mu_denom;
Sigma_numer = zeros(p,p);
for r = 1:obj_num
x_diff_mu = bsxfun(@minus, Data{r}, phi.mu(:,m,q)');
Sigma_numer = Sigma_numer + bsxfun(@times, Ita{r}(:,m,q), x_diff_mu)' * x_diff_mu;
end
phi.Sigma(:,:,m,q) = Sigma_numer / mu_denom;
if (cov_type=='diag')
phi.Sigma(:,:,m,q) = diag(diag(phi.Sigma(:,:,m,q)));
end
if min(eig(phi.Sigma(:,:,m,q))) < cov_thresh % prevent cov from being too small
phi.Sigma(:,:,m,q) = phi.Sigma(:,:,m,q) + cov_thresh * eye(p);
end
end
end
% loglik
loglik = 0;
for r = 1:obj_num
loglik = loglik + Loglik{r};
end
if (loglik-pre_ll<log(converge)) break;
else pre_ll = loglik; end
end
end
% output: ln p(xn|vn), size: N*M*Q
function logp_xn_given_vn = Get_logp_xn_given_vn(X, phi)
[N,p] = size(X);
[M,Q] = size(phi.B);
logp_xn_given_vn = zeros(N,M,Q);
for q = 1:Q
for m = 1:M
x_minus_mu = bsxfun(@minus, X, phi.mu(:,m,q)');
logp_xn_given_vn(:,m,q) = -0.5*p*log(2*pi) - 0.5*log(det(phi.Sigma(:,:,m,q))) - 0.5 * sum(x_minus_mu * inv(phi.Sigma(:,:,m,q)) .* x_minus_mu, 2);
end
end
end
% output: ln p(vn|xn), size: N*M*Q
function logita = CalculateLogIta(logp_xn_given_vn, p_start, A, phi)
[N,M,Q] = size(logp_xn_given_vn);
% reserve space
logc = zeros(N,1);
logalpha = zeros(N,M,Q);
logbeta = zeros(N,M,Q);
logita = zeros(N,M,Q);
Tmp = bsxfun( @plus, log(phi.B) + reshape(logp_xn_given_vn(1,:,:),M,Q), log(p_start) );
logc(1) = log( sum( sum( exp( Tmp - max(Tmp(:)) ) ) ) ) + max(Tmp(:));
logalpha(1,:,:) = -logc(1) + Tmp;
logbeta(N,:,:) = 0;
% calculate c, alpha
for n = 2:N
T4 = zeros(M,Q,M,Q); % dim 1,2: vn-1; dim 3,4: vn
for q = 1:Q
for m = 1:M
T4(:,:,m,q) = logp_xn_given_vn(n,m,q) + log(phi.B) + bsxfun( @plus, reshape(logalpha(n-1,:,:),M,Q), log(A(:,q)') );
end
end
tmp = exp( T4 - max(T4(:)) );
logc(n) = log( sum(tmp(:)) ) + max(T4(:));
for q = 1:Q
for m = 1:M
T2 = bsxfun( @plus, reshape(logalpha(n-1,:,:),M,Q), log(A(:,q)') );
if isinf(max(T2(:)))
logalpha(n,m,q) = -inf;
else
logalpha(n,m,q) = -logc(n) + logp_xn_given_vn(n,m,q) + log(phi.B(m,q)) + log( sum( sum( exp( T2 - max(T2(:)) ) ) ) ) + max(T2(:));
end
end
end
end
for n = N-1:-1:1
for q = 1:Q
for m = 1:M
T2 = bsxfun( @plus, reshape(logbeta(n+1,:,:),M,Q) + reshape(logp_xn_given_vn(n+1,:,:),M,Q) + log(phi.B), log(A(q,:)) );
logbeta(n,m,q) = -logc(n+1) + log( sum( sum( exp( T2 - max(T2(:) ) ) ) ) ) + max(T2(:));
end
end
end
% calculate ita
logita = logalpha + logbeta;
end
% convert logita to ita, substract the max
function Ita = UniformLogIta(LogIta)
obj_num = length(LogIta);
Q = size(LogIta{1}, 3);
for q = 1:Q
max_ita_ary = zeros(1, obj_num);
for r = 1:obj_num
max_ita_ary(r) = max(max(LogIta{r}(:,:,q)));
end
max_ita = max(max_ita_ary);
for r = 1:obj_num
LogIta{r}(:,:,q) = LogIta{r}(:,:,q) - max_ita;
end
end
for r = 1:obj_num
Ita{r} = exp(LogIta{r});
end
end