-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrf_minimal.py
48 lines (37 loc) · 1.99 KB
/
rf_minimal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import pandas as pd
import sklearn.ensemble as sk
import sklearn.metrics as metrics
import sklearn.model_selection as model_selection
import matplotlib.pyplot as plt
from sklearn import svm
np.random.seed(0)
print("Loading dataset...")
df = pd.read_csv('data/train_graph.csv', encoding='utf8', engine='python', chunksize=None)
# Define features and target
features = list(df.columns)
features.remove('label')
#features = ['favourites_count', 'followers', 'statuses_count', 'outdegree_predecessors', 'favorites_predecessors', 'favorites_successors', 'status_predecessors', 'age_predecessors', 'account_age', 'ego_density', 'ego_reciprocity']
features = ['favourites_count', 'followers', 'statuses_count']
x_train, x_test, y_train, y_test = model_selection.train_test_split(df[features], df['label'], test_size=0.2, shuffle=True, stratify=df['label'])
print("Number of features:", len(features))
print("Features:", features)
print("")
# Random Forest
rf = sk.RandomForestClassifier(n_jobs=-1, random_state=0, n_estimators=100, bootstrap=True, class_weight=None, criterion='gini',max_depth=14, max_features="auto", max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, oob_score=False, verbose=0, warm_start=False)
rf.fit(x_train, y_train)
rf_pred = rf.predict(x_test)
rf_prob = rf.predict_proba(x_test)
# Evaluation
rf_fpr, rf_tpr, _ = metrics.roc_curve(y_test, rf_pred)
rf_auc = metrics.roc_auc_score(y_test, rf_prob[:,1])
print("Evaluation")
print("RF:", "Acc:", round(metrics.accuracy_score(y_test, rf_pred), 4), "TPR:", round(rf_tpr[1], 4), "FPR:", round(rf_fpr[1], 4), "F1 score:", round(metrics.f1_score(y_test, rf_pred), 4), "AUC:", round(rf_auc, 4))
# Plot importance
importances = rf.feature_importances_
indices = np.argsort(importances)
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='b', align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()