-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_refinement.py
450 lines (392 loc) · 22.6 KB
/
model_refinement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import argparse
import torch
import os
import numpy as np
from scipy.linalg import svd, inv
import torch.nn.functional as F
import mrcfile
import pickle
from chroma import Protein
from chroma import Chroma
from chroma.layers.structure.rmsd import CrossRMSD
from src.plots import plot_metric, save_trajectory, plot_rmsd_ca_vs_completeness
from src.cif_utils import ma_cif_to_X
from src.fft import ifft_density
from src.pbe_solvers import RealisticSolver
def main(args):
torch.manual_seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
os.makedirs(args.outdir, exist_ok=True)
print("Saving arguments")
args_dict = vars(args)
with open(f"{args.outdir}/config.txt", 'w') as file:
for key in sorted(args_dict.keys()):
file.write(f"{key}: {args_dict[key]}\n")
print("Loading Chroma model")
if args.weights_backbone is not None and args.weights_design is not None:
chroma = Chroma(weights_backbone=args.weights_backbone, weights_design=args.weights_design)
else:
chroma = Chroma()
backbone_network = chroma.backbone_network
design_network = chroma.design_network
def multiply_R(Z, C): return backbone_network.noise_perturb.base_gaussian._multiply_R(Z, C)
def multiply_R_inverse(X, C): return backbone_network.noise_perturb.base_gaussian._multiply_R_inverse(X, C)
def multiply_covariance(dU, C): return backbone_network.noise_perturb.base_gaussian.multiply_covariance(dU, C)
print("Initializing PBE solver")
protein = Protein.from_CIF(args.cif, device='cuda')
X_gt, C_gt, S_gt = protein.to_XCS(all_atom=False) # we use X_gt to compute RMSD
mask_gt = (C_gt == 1)[0]
solver = RealisticSolver(
args.mrc, S=S_gt, remove_oxt=args.remove_oxt, normalization='constant', resolution=args.resolution, unpad_len=args.unpad_len, outdir=args.outdir
)
delta = solver.origin
X_gt -= delta # align X_gt with the density
density_gt = torch.tensor(solver.density)
f_density_gt = ifft_density(density_gt).cuda()
n_residues = X_gt.shape[1]
print("Generating full density")
X_gt_full, C_gt_full, S_gt_full = protein.to_XCS(all_atom=True)
chi_gt, mask_chi = design_network.X_to_chi(X_gt_full, C_gt_full, S_gt_full)
X_gt_full -= delta
f_density = solver.get_full_f_density_per_batch(X_gt_full, args.n_voxels_per_batch) # this density is unnormalized
density = torch.abs(ifft_density(f_density)).float().cpu().numpy()
print(f"Saving {args.outdir}/{args.outdir.split('/')[-1]}_from_X_gt.mrc")
with mrcfile.new(f"{args.outdir}/{args.outdir.split('/')[-1]}_from_X_gt.mrc", overwrite=True) as mrc:
mrc.set_data(density)
with mrcfile.open(f"{args.outdir}/{args.outdir.split('/')[-1]}_from_X_gt.mrc", mode='r+') as mrc:
mrc.voxel_size = solver.voxel_size
mrc.header.cella = solver.mrc_header.cella
mrc.header.origin = solver.mrc_header.origin
print("Precomputing preconditioning matrices")
try:
protein = Protein.from_CIF(args.ma_cif, device='cuda')
X_ma, C_ma, _ = protein.to_XCS()
mask_ma = C_ma[0].cpu().reshape(-1) > 0.5
except ValueError:
X_ma, mask_boundaries = ma_cif_to_X(args.ma_cif, X_gt.shape[1])
X_ma = X_ma.cuda()
mask_ma = mask_boundaries.reshape(-1) > 0.5
delta = (X_gt[0, mask_ma * mask_gt.cpu()] - X_ma[0, mask_ma * mask_gt.cpu()]).mean(dim=(0, 1))
X_ma += delta # align the incomplete model on X_gt (which should be aligned with the density)
Y = X_ma[:, mask_ma]
def mR_fun(z):
z = z.reshape(-1, n_residues, 4, 3)
return multiply_R(z, C_gt.expand(z.shape[0], -1))[:, mask_ma].reshape(z.shape[0], -1).permute(1, 0)
Z = torch.eye(n_residues * 12).cuda()
mR_mat = mR_fun(Z).cpu().numpy()
U, S, Vh = svd(mR_mat)
Um1 = inv(U)
Um1 = torch.tensor(Um1).float().cuda()[None].expand(args.population_size, -1, -1)
S = torch.tensor(S).float().cuda()
Vh = torch.tensor(Vh).float().cuda()[None].expand(args.population_size, -1, -1)
print("Initializing backbone")
C_gt = torch.abs(C_gt).expand(args.population_size, -1)
S_gt = S_gt.expand(args.population_size, -1)
chi_gt = chi_gt.expand(args.population_size, -1, -1)
Y = Y.expand(args.population_size, -1, -1, -1)
if args.init_gt:
X = torch.clone(X_gt).expand(args.population_size, -1, -1, -1) + args.eps_init
if args.std_dev_init > 1e-8:
X += args.std_dev_init * torch.randn_like(X)
Z = multiply_R_inverse(X, C_gt)
else:
Z = torch.randn(args.population_size, *X_gt.shape[1:]).float().cuda()
X = multiply_R(Z, C_gt)
V_m = torch.zeros_like(Z)
V_d = torch.zeros_like(Z)
V_s = torch.zeros_like(Z)
V_c = torch.zeros_like(Z)
def sample_chi(X, t=0):
print("Sampling side chain angles")
_X = F.pad(X, [0, 0, 0, 10])
node_h, edge_h, edge_idx, mask_i, mask_ij = design_network.encode(_X, C_gt, t=t)
permute_idx = design_network.traversal(_X, C_gt)
_, chi_sample, _, logp_chi, _ = design_network.decoder_chi.decode(
_X,
C_gt,
S_gt,
node_h,
edge_h,
edge_idx,
mask_i,
mask_ij,
permute_idx
)
return chi_sample
if args.use_gt_chi:
chi_sample = chi_gt
else:
chi_sample = torch.clone(sample_chi(X, t=1)).detach() if args.sample_chi_every > 0 else None
def t_fn(epoch):
if args.temporal_schedule == 'linear':
return (-args.t + 0.001) * epoch / args.epochs + args.t
elif args.temporal_schedule == 'sqrt':
return (1.0 - 0.001) * (1. - np.sqrt(epoch / args.epochs)) + 0.001
elif args.temporal_schedule == 'constant':
return args.t
else:
raise NotImplementedError
def lr_fn(epoch):
return args.lr_density
def resolution_fn(epoch):
if epoch < args.activate_resolution_drop:
return args.resolution_cutoff_start
else:
a = (args.resolution_cutoff_end - args.resolution_cutoff_start) / (args.epochs - args.activate_resolution_drop)
b = args.resolution_cutoff_start - args.activate_resolution_drop * a
return a * epoch + b
def sampling_rate_fn(epoch):
if args.sampling_rate_schedule == 'constant':
return args.sampling_rate_start
elif args.sampling_rate_schedule == 'linear':
return args.sampling_rate_start + epoch * (args.sampling_rate_end - args.sampling_rate_start) / args.epochs
elif args.sampling_rate_schedule == 'exp':
return np.exp(np.log(args.sampling_rate_start) + epoch * (np.log(args.sampling_rate_end) - np.log(args.sampling_rate_start)) / args.epochs)
else:
raise NotImplementedError
def density_error(d, d_gt, mode='mean'):
if mode == 'sum':
if args.normalize_detach:
norm = torch.linalg.norm(d.reshape(d.shape[0], -1), dim=-1, keepdim=True).detach()
norm_gt = torch.linalg.norm(d_gt).detach()
else:
norm = 4375.0 # hard-coded parameter -- has roughly the same role as the learning rate
norm_gt = 1.
neg_scalar_prod = (-torch.real(d.reshape(d.shape[0], -1) * d_gt.reshape(1, -1)) / (norm * norm_gt)).sum(-1)
return neg_scalar_prod.sum(), neg_scalar_prod.detach()
elif mode == 'mean':
return (torch.abs(d - d_gt) ** 2).mean(dim=(1, 2, 3)).sum(), (torch.abs(d - d_gt) ** 2).mean(dim=(1, 2, 3)).detach()
def get_gradient_Z_m(Z, t, epoch):
if args.lr_model > 0. and (args.de_activate_model < 0 or epoch < args.de_activate_model):
with (torch.enable_grad()):
Z.requires_grad_(True)
_Z = Z
if args.preconditioning_model:
Um1Y = torch.bmm(Um1, Y.reshape(Y.shape[0], -1, 1)).reshape(Y.shape[0], -1)
Sm1Um1Y = Um1Y / S
loss_m = ((torch.bmm(Vh, _Z.reshape(Z.shape[0], -1, 1))[:, :Um1.shape[1], 0] - Sm1Um1Y) ** 2).sum()
else:
loss_m = ((multiply_R(_Z, C_gt)[:, mask_ma] - Y) ** 2).sum()
loss_m.backward()
grad_Z_m = Z.grad
Z.requires_grad_(False)
else:
grad_Z_m = torch.zeros(*Z.shape).float().to(X.device)
loss_m = torch.tensor([0.]).float().cuda()
return grad_Z_m, loss_m
def get_gradient_Z_d(Z, chi_sample, t, epoch):
if args.lr_density > 0. and epoch >= args.activate_density:
with (torch.enable_grad()):
Z.requires_grad_(True)
_X = multiply_R(Z, C_gt)
if args.sample_chi_every > 0 and epoch + 1 % args.sample_chi_every == 0:
if args.use_gt_chi:
chi_sample = chi_gt
else:
chi_sample = sample_chi(_X, t)
_X_full, _ = design_network.chi_to_X(_X, C_gt, S_gt, chi_sample)
f_density_sampled, f_density_sampled_gt = solver.get_one_batch_f_density(
_X_full, f_density_gt, resolution_fn(epoch), sampling_rate=sampling_rate_fn(epoch)
)
loss_d, loss_d_per_sample = density_error(f_density_sampled, f_density_sampled_gt, mode='sum')
loss_d.backward()
grad_Z_d = Z.grad * (resolution_fn(epoch) / args.resolution_cutoff_end)**3 / sampling_rate_fn(epoch) # scale by epoch-dependent factors
Z.requires_grad_(False)
else:
grad_Z_d = torch.zeros(*Z.shape).float().to(X.device)
loss_d = torch.tensor([0.]).float().cuda()
loss_d_per_sample = torch.zeros(Z.shape[0]).float().cuda()
return grad_Z_d, loss_d, chi_sample, loss_d_per_sample
def get_gradient_Z_s(Z, t, epoch):
if args.lr_sequence > 0. and epoch >= args.activate_sequence:
with (torch.enable_grad()):
Z.requires_grad_(True)
_X = multiply_R(Z, C_gt)
_X_input = F.pad(_X, [0, 0, 0, 10])
out = design_network(_X_input, C_gt, S_gt, t.cuda())
logp_S = out["logp_S"]
loss_s = -logp_S.sum()
loss_s.backward()
grad_Z_s = Z.grad
Z.requires_grad_(False)
else:
grad_Z_s = torch.zeros(*Z.shape).float().to(X.device)
loss_s = torch.tensor([0.]).float().cuda()
return grad_Z_s, loss_s
def get_gradient_Z_c(Z):
if args.lr_inter_ca > 0.:
with (torch.enable_grad()):
Z.requires_grad_(True)
_X = multiply_R(Z, C_gt)
distances = torch.linalg.norm(_X[:, 1:, 1] - _X[:, :-1, 1])
loss_c = ((distances - 3.8) ** 2).sum()
loss_c.backward()
grad_Z_c = Z.grad
Z.requires_grad_(False)
else:
grad_Z_c = torch.zeros(*Z.shape).float().to(X.device)
loss_c = torch.tensor([0.]).float().cuda()
return grad_Z_c, loss_c
trajectory = [torch.clone(X_gt[:, mask_gt]).detach().cpu().numpy(),
torch.clone(Y[:1]).detach().cpu().numpy(),
(torch.clone(X).detach().cpu().numpy(), 'initial state')]
metrics = {'epoch': [], 'rmsd': [], 't': [], 'loss_m': [], 'loss_d': [], 'rmsd_ca': [],
'resolution': [], 'loss_s': [], 'lr_density': [], 'loss_d_per_sample': [], 'sampling_rate': [],
'loss_c': []}
print("--- Optimization starts now ---")
for epoch in range(args.epochs):
t = torch.tensor(t_fn(epoch)).float().cuda()
if args.use_diffusion:
with torch.no_grad():
X0 = backbone_network.denoise(X.detach(), C_gt, t)
else:
X0 = X
Z0 = multiply_R_inverse(X0, C_gt)
grad_Z_m, loss_m = get_gradient_Z_m(Z0, t, epoch)
V_m = args.rho_model * V_m + args.lr_model * grad_Z_m
grad_Z_d, loss_d, chi_sample, loss_d_per_sample = get_gradient_Z_d(Z0, chi_sample, t, epoch)
chi_sample = torch.clone(chi_sample).detach() if chi_sample is not None else None
V_d = args.rho_density * V_d + lr_fn(epoch) * grad_Z_d
grad_Z_s, loss_s = get_gradient_Z_s(Z0, t, epoch)
V_s = args.rho_sequence * V_s + args.lr_sequence * grad_Z_s
grad_Z_c, loss_c = get_gradient_Z_c(Z0)
V_c = args.rho_inter_ca * V_c + args.lr_inter_ca * grad_Z_c
Z0 = Z0 - V_m - V_d - V_s - V_c
# replicate models with lowest density error
if args.select_best_every > 0 and epoch >= args.activate_replication and epoch % args.select_best_every == 0:
assert Z0.shape[0] % args.replication_factor == 0, "The population size must be an integer multiple of the replication factor"
_, indices = torch.topk(loss_d_per_sample, Z0.shape[0] // args.replication_factor, largest=False)
Z0 = torch.clone(Z0[indices][:, None].expand(-1, args.replication_factor, -1, -1, -1)).reshape(-1, *Z0.shape[1:])
if args.use_diffusion:
tm1 = torch.tensor(t_fn(epoch + 1)).float().cuda()
alpha, sigma, _, _, _, _ = backbone_network.noise_perturb._schedule_coefficients(tm1)
X = multiply_R(alpha * Z0 + sigma * torch.randn_like(Z0), C_gt)
else:
X = multiply_R(Z0, C_gt)
if (epoch + 1) % args.log_every == 0:
rmsds = []
rmsds_cas = []
for i in range(args.population_size):
rmsd, _ = CrossRMSD().pairedRMSD(
torch.clone(X[i, mask_gt]).cpu().reshape(1, -1, 3),
torch.clone(X_gt[0, mask_gt]).cpu().reshape(1, -1, 3),
compute_alignment=True
)
rmsd_ca, _ = CrossRMSD().pairedRMSD(
torch.clone(X[i, mask_gt, 1, :]).cpu().reshape(1, -1, 3),
torch.clone(X_gt[0, mask_gt, 1, :]).cpu().reshape(1, -1, 3),
compute_alignment=True
)
rmsds.append(rmsd.item())
rmsds_cas.append(rmsd_ca.item())
idx_best = np.argmin(rmsds)
rmsd_best = rmsds[idx_best]
rmsd_ca_best = rmsds_cas[idx_best]
rmsd, X_aligned = CrossRMSD().pairedRMSD(
torch.clone(X[idx_best, mask_gt]).cpu().reshape(1, -1, 3),
torch.clone(X_gt[0, mask_gt]).cpu().reshape(1, -1, 3),
compute_alignment=True
)
X_aligned = X_aligned.reshape(1, -1, 4, 3)
metrics['epoch'].append(epoch)
metrics['t'].append(t.item())
metrics['loss_m'].append(loss_m.item())
metrics['loss_d'].append(loss_d.item())
metrics['loss_d_per_sample'].append(loss_d_per_sample)
metrics['loss_s'].append(loss_s.item())
metrics['loss_c'].append(loss_c.item())
metrics['resolution'].append(resolution_fn(epoch))
metrics['sampling_rate'].append(sampling_rate_fn(epoch))
metrics['lr_density'].append(lr_fn(epoch))
metrics['rmsd'].append(rmsds)
metrics['rmsd_ca'].append(rmsds_cas)
trajectory.append((torch.clone(X[idx_best][None]).detach().cpu().numpy(), 'x-update'))
print(f"Epoch {epoch + 1}/{args.epochs}, Loss Model: {loss_m.item():.4e}, Loss Density: {loss_d.item():.4e}, RMSD: {rmsd_best:.2e}, RMSD CA: {rmsd_ca_best:.2e}")
C_gt = C_gt[0:1]
S_gt = S_gt[0:1]
X_full, _ = design_network.chi_to_X(X[idx_best][None], C_gt, S_gt, chi_sample)
print(f"Saving {args.outdir}/metrics.pkl")
with open(f"{args.outdir}/metrics.pkl", 'wb') as file:
pickle.dump(metrics, file)
print(f"Saving {args.outdir}/{args.outdir.split('/')[-1]}.mrc")
f_density = solver.get_full_f_density_per_batch(X_full, args.n_voxels_per_batch)
density = torch.real(ifft_density(f_density))
density = density.cpu().numpy()
with mrcfile.new(f"{args.outdir}/{args.outdir.split('/')[-1]}.mrc", overwrite=True) as mrc:
mrc.set_data(density)
with mrcfile.open(f"{args.outdir}/{args.outdir.split('/')[-1]}.mrc", mode='r+') as mrc:
mrc.voxel_size = solver.voxel_size
mrc.header.cella = solver.mrc_header.cella
mrc.header.origin = solver.mrc_header.origin
print(f"Saving {args.outdir}/{args.outdir.split('/')[-1]}.pdb")
X_full += solver.origin
protein_out = Protein.from_XCS(X_full, C_gt, S_gt)
protein_out.to_PDB(f"{args.outdir}/{args.outdir.split('/')[-1]}.pdb")
for key in metrics.keys():
if key != 'epoch' and key != 'loss_d_per_sample':
print(f"Saving {args.outdir}/{key}.png")
plot_metric(metrics, key, f"{args.outdir}/{key}.png")
print(f"Saving {args.outdir}/{args.outdir.split('/')[-1]}.mp4")
save_trajectory(trajectory, f"{args.outdir}/{args.outdir.split('/')[-1]}.mp4")
print(f"Saving {args.outdir}/rmsd_ca_vs_completeness.png")
plot_rmsd_ca_vs_completeness(X_gt, X_ma, X[idx_best][None], mask_gt.cpu(), mask_ma, f"{args.outdir}/rmsd_ca_vs_completeness.png")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# required parameters
parser.add_argument('--outdir', type=str, required=True, help="Path to output directory.")
parser.add_argument('--mrc', type=str, required=True, help="Path to density map in the MRC file.")
parser.add_argument('--ma-cif', type=str, required=True, help="Path to incomplete model (e.g., ModelAngelo output), in the CIF format.")
parser.add_argument('--cif', type=str, required=True, help="Path to deposited CIF file.")
# I/O parameters
parser.add_argument('--remove-oxt', type=int, default=1, help="Flag to ignore terminal oxygen.")
parser.add_argument('--weights-backbone', type=str, default=None, help="Path to Chroma weights (backbone).")
parser.add_argument('--weights-design', type=str, default=None, help="Path to Chroma weights (design).")
parser.add_argument('--resolution', type=float, default=2.0, help="Resolution of the density map")
parser.add_argument('--unpad-len', type=int, default=0, help="Number of (empty) voxels to remove on each side of the input voxel grid, to speed up computation.")
# optimization parameters
parser.add_argument('--epochs', type=int, default=4000, help="Number of epochs.")
parser.add_argument('--population-size', type=int, default=16, help="Number of atomic models to simultaneously optimize.")
parser.add_argument('--lr-model', type=float, default=1e-2, help="Learning rate for the model loss.")
parser.add_argument('--rho-model', type=float, default=0.9, help="Momentum for the model loss.")
parser.add_argument('--lr-density', type=float, default=1e-2, help="Learning rate for the density loss.")
parser.add_argument('--rho-density', type=float, default=0.9, help="Momentum for the density loss.")
parser.add_argument('--lr-sequence', type=float, default=1e-5, help="Learning rate for the sequence loss.")
parser.add_argument('--rho-sequence', type=float, default=0.9, help="Momentum for the sequence loss.")
parser.add_argument('--lr-inter-ca', type=float, default=0.0, help="Learning rate for the inter-CA loss.")
parser.add_argument('--rho-inter-ca', type=float, default=0.9, help="Momentum for the inter-CA loss.")
parser.add_argument('--preconditioning-model', type=int, default=1, help="Flag to use preconditioning on the model loss.")
parser.add_argument('--normalize-detach', type=int, default=0, help="Normalize Fourier map before computing the density loss.")
parser.add_argument('--de-activate-model', type=int, default=-1, help="Number of epochs before de-activating the model loss (-1 to always activate).")
parser.add_argument('--activate-density', type=int, default=0, help="Number of epochs before activating density loss.")
parser.add_argument('--activate-sequence', type=int, default=3000, help="Number of epochs before activating sequence loss.")
# diffusion parameters
parser.add_argument('--use-diffusion', type=int, default=1, help="Flag to use the diffusion model.")
parser.add_argument('--temporal-schedule', type=str, default='sqrt', choices=['sqrt', 'linear', 'constant'], help="Type of temporal schedule.")
parser.add_argument('--t', type=float, default=1.0, help="Initial diffusion time (between 0 and 1).")
# resolution
parser.add_argument('--resolution-cutoff-start', type=float, default=1.5, help="Initial resolution to compute the (Fourier) density maps up to.")
parser.add_argument('--resolution-cutoff-end', type=float, default=1.5, help="Final resolution to compute the (Fourier) density maps up to.")
parser.add_argument('--activate-resolution-drop', type=int, default=0, help="Number of epochs before changing the resolution.")
# random sampling
parser.add_argument('--sampling-rate-schedule', type=str, default='constant', choices=['constant', 'linear', 'exp'], help='Type of schedule for the sampling rate.')
parser.add_argument('--sampling-rate-start', type=float, default=0.1, help='Initial sampling rate.')
parser.add_argument('--sampling-rate-end', type=float, default=1.0, help='Final sampling rate.')
# side-chain parameters
parser.add_argument('--sample-chi-every', type=int, default=100, help="Frequency (in epochs) of side-chain sampling.")
parser.add_argument('--use-gt-chi', type=int, default=0, help="Flag to use ground truth side-chain angles, for debugging purposes.")
# genetic parameters
parser.add_argument('--replication-factor', type=int, default=2, help='Number of replications at each selection step.')
parser.add_argument('--activate-replication', type=int, default=1, help="Number of epochs to wait before activating the selection/replication.")
parser.add_argument('--select-best-every', type=int, default=500, help='Frequency (in epochs) of selection/replication (-1 to de-activate).')
# initialization parameters
parser.add_argument('--seed', type=int, default=0, help="Random seed.")
parser.add_argument('--init-gt', type=int, default=0, help="Flag to initialize the model from the deposited CIF, for debugging purposes.")
parser.add_argument('--std-dev-init', type=float, default=0.0, help="Intensity of Gaussian random noise added on ground truth.")
parser.add_argument('--eps-init', type=float, default=0.0, help="Size of initial deviation to ground truth in the direction (1, 1, 1).")
# other parameters
parser.add_argument('--n-voxels-per-batch', type=int, default=1024, help="Number of voxels per batch to avoid OOM when computing full density maps.")
# logging parameters
parser.add_argument('--log-every', type=int, default=10, help="Frequency (in epochs) for logging.")
args = parser.parse_args()
main(args)