-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathQAOA1fastscan.py
57 lines (48 loc) · 1.84 KB
/
QAOA1fastscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from qaoaLibrary import *
import sys
import time
from matplotlib.pyplot import *
# Perform a fast optimization of QAOA1 angles.
# The code returns optimal beta, gamma and energy
def optQAOA1(H, typeOfOpt='Nelder-mead'):
pH = pointer(H)
fOpt = lambda bg: expectQAOA1(H, bg.tolist())
bg0 = 0.5*np.ones(2)
opt = minimize(fOpt, bg0, method=typeOfOpt)
bgOpt = opt.x
E = expectQAOA1(H, opt.x.tolist())
return (bgOpt, E)
for n in range(10, 100, 10):
# Hamiltonian
H = ham()
qc.allocateH(byref(H),n)
# OPTION 1: Generate exact long-range Hamiltonian (or any other Hamiltonian of choice)
J = 1.0
h = -0.3
alpha = 0.8
# Replace qc.lr by qc.lrPer for Periodic boundary conditions
qc.lr(byref(H),c_double(J), c_double(h), c_double(alpha))
# Set all single Z terms to 0, or other value of choosing
H.zc = (c_double * n)(*([-0.00]*n))
# OPTION 2: Read Hamiltonian coefficients from file
#Jij = np.loadtxt('expJ-n%d.dat'%n)
#hamGen(H, Jij, Xcoeff*np.ones(n), np.zeros(n))
#Zcoeff = np.mean([Jij[i,i+1] for i in range(n-1)])
# Find the optimal beta, gamma values. This is optional,
# but if you want to fix one angle at its optimum value, it
# will help to have these values pre-computed.
bgOpt, Eopt = optQAOA1(H)
# Now, sweep angles beta, gamma in QAOA1 and compute output energy
# E(beta, gamma) using the efficient analytical formula.
# This is fast! You can probably output energy curves for n=100
# with reasonable computation times
E = []
for i in range(100):
E.append(-expectQAOA1(H,[abs(bgOpt[0]), 0.01*i])/Eopt)
plot(0.01*np.arange(100), E, label='n=%d'%n)
ylim(-1.05,0.3)
ylabel("Energy (normalized so that min. E = -1)")
xlabel("gamma")
legend(loc='lower right')
savefig('QAOA1_gamma_n_scan.png')
show()