forked from 1240117300/MINIST
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest2.py
150 lines (129 loc) · 5.92 KB
/
test2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# 训练+测试
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
import os
import cv2
torch.manual_seed(1) # 使用随机化种子使神经网络的初始化每次都相同
# 超参数
EPOCH = 1 # 训练整批数据的次数
BATCH_SIZE = 50
LR = 0.001 # 学习率
DOWNLOAD_MNIST = True # 表示还没有下载数据集,如果数据集下载好了就写False
# 下载mnist手写数据集
train_data = torchvision.datasets.MNIST(
root='./data/', # 保存或提取的位置 会放在当前文件夹中
train=True, # true说明是用于训练的数据,false说明是用于测试的数据
transform=torchvision.transforms.ToTensor(), # 转换PIL.Image or numpy.ndarray
download=DOWNLOAD_MNIST, # 已经下载了就不需要下载了
)
test_data = torchvision.datasets.MNIST(
root='./data/',
train=False # 表明是测试集
)
# 批训练 50个samples, 1 channel,28x28 (50,1,28,28)
# Torch中的DataLoader是用来包装数据的工具,它能帮我们有效迭代数据,这样就可以进行批训练
train_loader = Data.DataLoader(
dataset=train_data,
batch_size=BATCH_SIZE,
shuffle=True # 是否打乱数据,一般都打乱
)
# 进行测试
# 为节约时间,测试时只测试前2000个
#
test_x = torch.unsqueeze(test_data.train_data, dim=1).type(torch.FloatTensor)[:2000] / 255
# torch.unsqueeze(a) 是用来对数据维度进行扩充,这样shape就从(2000,28,28)->(2000,1,28,28)
# 图像的pixel本来是0到255之间,除以255对图像进行归一化使取值范围在(0,1)
test_y = test_data.test_labels[:2000]
# 用class类来建立CNN模型
# CNN流程:卷积(Conv2d)-> 激励函数(ReLU)->池化(MaxPooling)->
# 卷积(Conv2d)-> 激励函数(ReLU)->池化(MaxPooling)->
# 展平多维的卷积成的特征图->接入全连接层(Linear)->输出
class CNN(nn.Module): # 我们建立的CNN继承nn.Module这个模块
def __init__(self):
super(CNN, self).__init__()
# 建立第一个卷积(Conv2d)-> 激励函数(ReLU)->池化(MaxPooling)
self.conv1 = nn.Sequential(
# 第一个卷积con2d
nn.Conv2d( # 输入图像大小(1,28,28)
in_channels=1, # 输入图片的高度,因为minist数据集是灰度图像只有一个通道
out_channels=16, # n_filters 卷积核的高度
kernel_size=5, # filter size 卷积核的大小 也就是长x宽=5x5
stride=1, # 步长
padding=2, # 想要con2d输出的图片长宽不变,就进行补零操作 padding = (kernel_size-1)/2
), # 输出图像大小(16,28,28)
# 激活函数
nn.ReLU(),
# 池化,下采样
nn.MaxPool2d(kernel_size=2), # 在2x2空间下采样
# 输出图像大小(16,14,14)
)
# 建立第二个卷积(Conv2d)-> 激励函数(ReLU)->池化(MaxPooling)
self.conv2 = nn.Sequential(
# 输入图像大小(16,14,14)
nn.Conv2d( # 也可以直接简化写成nn.Conv2d(16,32,5,1,2)
in_channels=16,
out_channels=32,
kernel_size=5,
stride=1,
padding=2
),
# 输出图像大小 (32,14,14)
nn.ReLU(),
nn.MaxPool2d(2),
# 输出图像大小(32,7,7)
)
# 建立全卷积连接层
self.out = nn.Linear(32 * 7 * 7, 10) # 输出是10个类
# 下面定义x的传播路线
def forward(self, x):
x = self.conv1(x) # x先通过conv1
x = self.conv2(x) # 再通过conv2
# 把每一个批次的每一个输入都拉成一个维度,即(batch_size,32*7*7)
# 因为pytorch里特征的形式是[bs,channel,h,w],所以x.size(0)就是batchsize
x = x.view(x.size(0), -1) # view就是把x弄成batchsize行个tensor
output = self.out(x)
return output
cnn = CNN()
print(cnn)
# 训练
# 把x和y 都放入Variable中,然后放入cnn中计算output,最后再计算误差
# 优化器选择Adam
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
# 损失函数
loss_func = nn.CrossEntropyLoss() # 目标标签是one-hotted
# 开始训练
# for epoch in range(EPOCH):
# for step, (b_x, b_y) in enumerate(train_loader): # 分配batch data
# output = cnn(b_x) # 先将数据放到cnn中计算output
# loss = loss_func(output, b_y) # 输出和真实标签的loss,二者位置不可颠倒
# optimizer.zero_grad() # 清除之前学到的梯度的参数
# loss.backward() # 反向传播,计算梯度
# optimizer.step() # 应用梯度
#
# if step % 50 == 0:
# test_output = cnn(test_x)
# pred_y = torch.max(test_output, 1)[1].data.numpy()
# accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
# print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
#
# torch.save(cnn.state_dict(), 'cnn2.pkl')#保存模型
# 加载模型,调用时需将前面训练及保存模型的代码注释掉,否则会再训练一遍
cnn.load_state_dict(torch.load('cnn2.pkl'))
cnn.eval()
# print 10 predictions from test data
inputs = test_x[:32] # 测试32个数据
test_output = cnn(inputs)
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number') # 打印识别后的数字
# print(test_y[:10].numpy(), 'real number')
img = torchvision.utils.make_grid(inputs)
img = img.numpy().transpose(1, 2, 0)
# 下面三行为改变图片的亮度
# std = [0.5, 0.5, 0.5]
# mean = [0.5, 0.5, 0.5]
# img = img * std + mean
cv2.imshow('win', img) # opencv显示需要识别的数据图片
key_pressed = cv2.waitKey(0)