-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
58 lines (44 loc) · 1.58 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# GitAI <img src="man/figures/logo.png" align="right" height="138" style="float:right; height:138px;"/>
<!-- badges: start -->
[![Codecov test coverage](https://codecov.io/gh/r-world-devs/GitAI/graph/badge.svg)](https://app.codecov.io/gh/r-world-devs/GitAI)
<!-- badges: end -->
The goal of GitAI is to derive knowledge from GitHub or GitLab repositories with the use of AI/LLM (Large Language Models). With GitAI you can easily:
- set up your project scope (Git repositories),
- select content of interest (files and file types),
- choose your LLM backend,
- define the LLM prompts,
- process content of all repositories with a single function call.
And all of that in a nice tidyverse style.
## Installation
You can install the development version of `GitAI` from [GitHub](https://github.com/) with:
``` r
# install.packages("pak")
pak::pak("r-world-devs/GitAI")
```
## Example workflow
Basic workflow could look like:
```{r}
library(GitAI)
# Set up project
verbose_off()
my_project <- initialize_project("fascinating_project") |>
set_github_repos(repos = c("r-world-devs/GitStats", "r-world-devs/GitAI", "openpharma/DataFakeR")) |>
add_files(files = "README.md") |>
set_llm() |>
set_prompt("Write one-sentence summary for a project based on given input.")
# Get the results
results <- process_repos(my_project)
purrr::map(results, ~.$text)
```