-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDSP_project.m
74 lines (65 loc) · 2.24 KB
/
DSP_project.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
deepnet = googlenet;
img = imread("C:\Users\USER\Desktop\images_original\blues\blues00000.png");
%pred = classify(deepnet,img);
sz = size(img);
inlayer = deepnet.Layers(1);
insz = inlayer.InputSize;
img = imresize(img ,[224,224]);
imshow(img);
%Resizing imgages and and displaying them
%%
location = 'C:\Users\USER\Desktop\images_original\blues\*.png';
ds = imageDatastore(location);
for i = 1 : 5 % specify number of images to display
img = read(ds) ; % read image from datastore
figure, imshow(img); % creates a new window for each image
end
%Test
%%
net = googlenet;
location = 'C:\Users\Filip\Desktop\images_original\blues\*.png';
imds = imageDatastore(location);
auds = augmentedImageDatastore([224 224],imds);
preds = classify(net,auds)
%images classified with respect googlenet deep learning network
%%
location = 'C:\Users\Filip\Desktop\images_original';
imds = imageDatastore(location,"IncludeSubfolders",true,"FileExtensions",".png","LabelSource","foldernames");
perm = randperm(10000,20);
% for i = 1:5
% img = read(imds);
% figure, imshow(img);
% end
labelCount = countEachLabel(imds)
img = readimage(imds,1);
size(img)
numTrainFiles = 75;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
layers = [
imageInputLayer([288 432 3])
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',8, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation)