-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoder.py
169 lines (137 loc) · 4.73 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from keras.layers import Input, Dense, Activation, Dropout
from keras.models import Model, load_model
import numpy as np
import csv
import math
import sys
import h5py
def normalizeData (data):
global channels
c = 0
channels = len(data[0])
while c < channels:
smallest = data[0][c]
largest = data[0][c]
for point in data:
if point[c] < smallest:
smallest = point[c]
if point[c] > largest:
largest = point[c]
largest -= smallest
for point in data:
point[c] = (point[c] - smallest) / (largest or 1)
c += 1
csv_name = "extracted.csv"
#set parameters for windows
window_size = 50
overlap = .10
channels = 8
#epochs
if sys.argv[1].isdigit():
epochs = int(sys.argv[1])
elif len(sys.argv) > 2:
if sys.argv[2].isdigit():
epochs = int(sys.argv[2])
else:
epochs = 5000
data = []
windows = []
#get data from csv and convert to 2D list
with open("extracted/" + csv_name) as csvfile:
reader = csv.reader(csvfile, delimiter=",")
for row in reader:
data.append(list(map(float, row)))
normalizeData(data)
#create windows from data
win_i = 0
data_i = 0
while data_i + window_size <= len(data):
win = []
i = data_i
while i < data_i + window_size:
for val in data[i]:
win.append(val)
i += 1
windows.append(win)
data_i = int((data_i + window_size) - (overlap * window_size))
print("Total windows: " + str(len(windows)))
#convert windows to numpy array
#windows_train = np.array(windows).astype("float32")
#windows_test = windows_train
windows_train = np.array(windows[:len(windows)//2]).astype("float32")
windows_test = np.array(windows[len(windows)//2:]).astype("float32")
#set data dimensions for layers
# input_dim = len(windows[0])
input_dim = len(windows_train[0])
encoder_1_dim = math.floor(math.floor(input_dim * .8))
encoder_2_dim = math.floor(math.floor(input_dim * .6))
encoder_3_dim = math.floor(math.floor(input_dim * .4))
encoder_4_dim = math.floor(math.floor(input_dim * .2))
decoder_1_dim = encoder_3_dim
decoder_2_dim = encoder_2_dim
decoder_3_dim = encoder_1_dim
decoder_4_dim = input_dim
#input layers
input_layer = Input(shape=(input_dim,))
encoded_input = Input(shape=(encoder_4_dim,))
#if no argument passed to script
if len(sys.argv) == 1 or (len(sys.argv) > 1 and sys.argv[1].isdigit()):
encoded_1 = Dense(encoder_1_dim, activation="relu")(input_layer)
encoded_2 = Dense(encoder_2_dim, activation="relu")(encoded_1)
encoded_3 = Dense(encoder_3_dim, activation="relu")(encoded_2)
encoded_4 = Dense(encoder_4_dim, activation="relu")(encoded_3)
decoded_1 = Dense(decoder_1_dim, activation="relu")(encoded_input)
decoded_2 = Dense(decoder_2_dim, activation="relu")(decoded_1)
decoded_3 = Dense(decoder_3_dim, activation="relu")(decoded_2)
decoded_4 = Dense(decoder_4_dim, activation="sigmoid")(decoded_3)
#construct models
encoder = Model(input_layer, encoded_4)
decoder = Model(encoded_input, decoded_4)
autoencoder = Model(input_layer, decoder(encoder(input_layer)))
elif sys.argv[1] == "load":
#load the autoencoder model and construct the encoder/decoder from it
encoder = load_model("models/encoder.h5")
decoder = load_model("models/decoder.h5")
autoencoder = Model(input_layer, decoder(encoder(input_layer)))
autoencoder.compile(optimizer='adadelta', loss='mean_squared_error', metrics=['accuracy'])
#train the autoencoder
autoencoder.fit(
windows_train, windows_train,
epochs = epochs,
batch_size = len(windows_train),
shuffle = True,
validation_data = (windows_test, windows_test)
)
#save models
encoder.save("models/encoder.h5")
decoder.save("models/decoder.h5")
#get encoded and decoded data
encoded_data = encoder.predict(windows_test)
decoded_data = decoder.predict(encoded_data)
#calculate distances of encoded
dist = []
for i in range(0, len(encoded_data)):
if (i < len(encoded_data) - 1):
dist.append([
np.linalg.norm(encoded_data[i] - encoded_data[i + 1])
/
np.sqrt(np.linalg.norm(encoded_data[i]) * np.linalg.norm(encoded_data[i + 1]))
])
#save original and decoded data into csv
def save (filename, data):
with open ("results/" + filename + ".csv", "w") as csvfile:
res = ""
row = ""
for win in data:
for i in range(0, len(win)):
row += str(win[i])
if (i + 1) % channels == 0 or filename == "distance":
res += row + "\n"
row = ""
else:
row += ","
csvfile.write(res)
save("original", windows_test)
save("encoded", encoded_data)
save("decoded", decoded_data)
save("distance", dist)