-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL1AnomalyBase.py
130 lines (119 loc) · 5.65 KB
/
L1AnomalyBase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import h5py
import numpy as np
import matplotlib.pyplot as plt
import mplhep as hep
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import roc_curve, auc
import tensorflow as tf
# from tensorflow.keras.optimizers import Adam
# from tensorflow.keras.initializers import HeUniform
# from tensorflow.keras.models import Model
# from tensorflow.keras.layers import Input, Dense, BatchNormalization, LeakyReLU
# from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, TerminateOnNaN, TensorBoard
plt.style.use(hep.style.CMS)
class L1AnomalyBase:
def __init__(self, background_file, signal_files, signal_labels, blackbox_file, classVar = False):
#Config flags
self.gpu_install_flag = False
#File Attributes
self.background_file = background_file
self.signal_files = signal_files
self.signal_labels = signal_labels
self.blackbox_file = blackbox_file
#Size Attributes
# self.test_size = test_size
# self.val_size = val_size
if classVar == True:
self.nfeat = 4
else:
self.nfeat = 3
#Constants
self.nmet = 1
self.nele = 4
self.nmu = 4
self.njet = 10
self.ele_off = 1
self.mu_off = self.nmet + self.nele
self.jet_off = self.nmet + self.nele + self.nmu
self.phi_max = np.pi
self.ele_eta_max = 3.0
self.mu_eta_max = 2.1
self.jet_eta_max = 4.0
@staticmethod
def find_nearest(self, array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
@staticmethod
def scale_pt(self, X, pt_scaler=None):
pt = X[:, 0::self.nfeat]
if pt_scaler is None:
pt_scaler = StandardScaler()
pt_scaled = pt_scaler.fit_transform(pt)
else:
pt_scaled = pt_scaler.transform(pt)
X_scaled = np.copy(X)
X_scaled[:, 0::self.nfeat] = np.multiply(pt_scaled, pt != 0)
return X_scaled, pt_scaler
#0 for background, 1 for signal, 2 for blackbox
def load_data(self, type = 0):
if self.classVar == False:
if type == 0:
#load background data
with h5py.File(self.background_file, "r") as f:
self.background_data = f["Particles"][:, :, :-1]
elif type == 1:
#load all four signals
with h5py.File(self.signal_files[0], "r") as f:
self.signal_data_0 = f["Particles"][:, :, :-1]
with h5py.File(self.signal_files[1], "r") as f:
self.signal_data_1 = f["Particles"][:, :, :-1]
with h5py.File(self.signal_files[2], "r") as f:
self.signal_data_2 = f["Particles"][:, :, :-1]
with h5py.File(self.signal_files[3], "r") as f:
self.signal_data_3 = f["Particles"][:, :, :-1]
elif type == 2:
#load blackbox
with h5py.File(self.background_file, "r") as f:
self.blackbox_data = f["Particles"][:, :, :-1]
else:
if type == 0:
#load background data
with h5py.File(self.background_file, "r") as f:
self.background_data = f["Particles"][:, :, :]
elif type == 1:
#load all four signals
with h5py.File(self.signal_files[0], "r") as f:
self.signal_data_0 = f["Particles"][:, :, :]
with h5py.File(self.signal_files[1], "r") as f:
self.signal_data_1 = f["Particles"][:, :, :]
with h5py.File(self.signal_files[2], "r") as f:
self.signal_data_2 = f["Particles"][:, :, :]
with h5py.File(self.signal_files[3], "r") as f:
self.signal_data_3 = f["Particles"][:, :, :]
elif type == 2:
#load blackbox
with h5py.File(self.background_file, "r") as f:
self.blackbox_data = f["Particles"][:, :, :]
def preprocess_data(self, RS = 42, test_size=0.2, val_size=0.2):
self.test_size = test_size
self.val_size = val_size
self.X_train_val, self.X_test = train_test_split(self.background_data.reshape(self.background_data.shape[0], -1),
test_size=self.test_size,
shuffle=True,
random_state=RS)
self.X_train, self.X_val = train_test_split(self.X_train_val, test_size=self.val_size, shuffle=True, random_state=RS)
self.X_train_scaled, self.pt_scaler = self.scale_pt(self.X_train)
self.X_val_scaled, _ = self.scale_pt(self.X_val, self.pt_scaler)
self.X_test_scaled, _ = self.scale_pt(self.X_test, self.pt_scaler)
def preprocess_data_v2(self, RS = 42, filter_size=0.2, test_size=0.2):
self.test_size = test_size
self.filter_size = filter_size
self.X_train_test, self.X_traneous = train_test_split(self.background_data.reshape(self.background_data.shape[0], -1),
test_size=self.filter_size,
shuffle=True,
random_state=RS)
self.X_train, self.X_test = train_test_split(self.X_train_test, test_size=self.test_size, shuffle=True, random_state=RS)
self.X_train_scaled, self.pt_scaler = self.scale_pt(self.X_train)
self.X_test_scaled, _ = self.scale_pt(self.X_test, self.pt_scaler)