-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_filter_script.py
executable file
·51 lines (36 loc) · 1.75 KB
/
new_filter_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 28 12:51:33 2018
@author: rachel
"""
import numpy as np
from matplotlib import pyplot as plt
from operator import itemgetter
#%%
filepath = '/Users/rachellim/Documents/Research/Dye_CHESS_Jan20/'
sample = 'fd1-q-1'
grains_filebase = '/scan_%04d_grains.out'
scan_IDs = np.arange(12,68)
chi2_threshold = 1e-2
#%%
grains_data = {}
for i in range(len(scan_IDs)): #load grains.out data
grains_data['scan%d' %scan_IDs[i]] = np.loadtxt(filepath + sample + grains_filebase %scan_IDs[i])
good_grains = []
for i in range(len(grains_data['scan21'])): #grain filter
grain_flag = True
for j in range(len(scan_IDs)):
if grains_data['scan%d' %scan_IDs[j]][i,2] > chi2_threshold:
grain_flag = False
if grain_flag == True:
good_grains.append(i)
print('# grains tracked across all states = ' + str(len(good_grains)))
#%%
collect_directory = filepath + sample + '_filtered/'
new_file = 'filtered_scan_%04d_grains.out'
for i in range(len(scan_IDs)):
filtered_grains_data = itemgetter(good_grains)(grains_data['scan%d' %scan_IDs[i]])
format = '\t%3d\t%0.6f\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f\t\t%0.12f'
header = 'grain ID\t completeness\t chi2\t\t\t xi[0]\t\t\t xi[1]\t\t\t xi[2]\t\t\t tVec_c[0]\t\t tVec_c[1]\t\t tVec_c[2]\t\t vInv_s[0]\t\t vInv_s[1]\t\t vInv_s[2]\t\t vInv_s[4]*sqrt(2)\t vInv_s[5]*sqrt(2)\t vInv_s[6]*sqrt(2)\t ln(V[0,0])\t\t ln(V[1,1])\t\t ln(V[2,2])\t\t ln(V[1,2])\t\t ln(V[0,2])\t\t ln(V[0,1])'
np.savetxt(collect_directory + new_file %scan_IDs[i], filtered_grains_data, fmt = format, header=header)