forked from zihengw/jaguar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jaguar3d_multilayers.i
165 lines (155 loc) · 4.6 KB
/
jaguar3d_multilayers.i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
[Mesh]
file = 3d_moving_v4.msh
[]
[Variables]
[./temperature]
initial_condition = 296 # Initial temperature
scaling = 1e3 # Multiply the PDE by the scaling number, use when the residual is too small/large to avoid computational inaccuracy
[../]
[]
[Functions]
# Assign different thermal conductivity along time to materials in different layers
[./material_layer2]
type = ParsedFunction
value = 'if(t>=0.05,0.0067,0.0000)' # Thermal conductivity W/mm*K
[../]
[./material_layer3]
type = ParsedFunction
value = 'if(t>=0.10,0.0067,0.0000)' # Thermal conductivity W/mm*K
[../]
[./material_layer4]
type = ParsedFunction
value = 'if(t>=0.15,0.0067,0.0000)' # Thermal conductivity W/mm*K
[../]
[./material_layer5]
type = ParsedFunction
value = 'if(t>=0.20,0.0067,0.0000)' # Thermal conductivity W/mm*K
[../]
[./material_layer6]
type = ParsedFunction
value = 'if(t>=0.25,0.0067,0.0000)' # Thermal conductivity W/mm*K
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temperature
[../]
[./heat_conduction_time_derivative]
type = HeatConductionTimeDerivative
variable = temperature
[../]
[]
[DiracKernels]
[./point_heat_source]
type = MovingDirac3d_multilayers
variable = temperature
value = 150
point = '0 0.2 0.2'
[../]
[]
[BCs]
[./outlet_temperature]
type = DirichletBC
variable = temperature
boundary = 'bottom_outlet'
value = 296 # (K)
[../]
[]
[Materials]
# Specific heat and density
[./Ti64_base]
type = GenericConstantMaterial
block = base
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '0.0067 0.526 0.0043' # W/mm*K, J/g-K, g/mm^3 @ 296K
[../]
[./Ti64_layer1]
type = GenericConstantMaterial
block = layer_1
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '0.0067 0.526 0.0043' # W/mm*K, J/g-K, g/mm^3 @ 296K
[../]
[./Ti64_layer2]
type = GenericConstantMaterial
block = layer_2
prop_names = 'specific_heat density'
prop_values = '0.526 0.0043' # W/mm*K, J/g-K, g/mm^3 @ 296K
[../]
[./Ti64_layer3]
type = GenericConstantMaterial
block = layer_3
prop_names = 'specific_heat density'
prop_values = '0.526 0.0043' # W/mm*K, J/g-K, g/mm^3 @ 296K
[../]
[./Ti64_layer4]
type = GenericConstantMaterial
block = layer_4
prop_names = 'specific_heat density'
prop_values = '0.526 0.0043' # W/mm*K, J/g-K, g/mm^3 @ 296K
[../]
[./Ti64_layer5]
type = GenericConstantMaterial
block = layer_5
prop_names = 'specific_heat density'
prop_values = '0.526 0.0043' # W/mm*K, J/g-K, g/mm^3 @ 296K
[../]
[./Ti64_layer6]
type = GenericConstantMaterial
block = layer_6
prop_names = 'specific_heat density'
prop_values = '0.526 0.0043' # W/mm*K, J/g-K, g/mm^3 @ 296K
[../]
#Inactive layer thermal conductivity
[./Ti64_layer2_conduct]
type = GenericFunctionMaterial
block = layer_2
prop_names = 'thermal_conductivity'
prop_values = material_layer2
[../]
[./Ti64_layer3_conduct]
type = GenericFunctionMaterial
block = layer_3
prop_names = 'thermal_conductivity'
prop_values = material_layer3
[../]
[./Ti64_layer4_conduct]
type = GenericFunctionMaterial
block = layer_4
prop_names = 'thermal_conductivity'
prop_values = material_layer4
[../]
[./Ti64_layer5_conduct]
type = GenericFunctionMaterial
block = layer_5
prop_names = 'thermal_conductivity'
prop_values = material_layer5
[../]
[./Ti64_layer6_conduct]
type = GenericFunctionMaterial
block = layer_6
prop_names = 'thermal_conductivity'
prop_values = material_layer6
[../]
[]
[Problem]
type = FEProblem
[]
[Executioner]
type = Transient
nl_rel_tol = 1e-5
l_tol = 1e-13 # Use to control the number of linear iteration, can help to lower the non-linear residual when it is not converge
start_time = 0.0
num_steps = 1200
solve_type = 'PJFNK' # Preconditioning Jacobian Free Newton-Keylov
petsc_options_iname = '-pc_type -pc_hypre_type' #pc: Preconditioning // Hypre: parallel high performance preconditioners (library)
petsc_options_value = 'hypre boomeramg' # mg: multigrid
[./TimeStepper]
type = FunctionDT
time_t = '0.0 0.003 0.008 0.045 0.05 0.053 0.058 0.095 0.100 0.103 0.108 0.145 0.15 0.153 0.158 0.195 0.200 0.203 0.208 0.245 0.25 0.253'
time_dt = '0.00005 0.00005 0.0005 0.0005 0.00005 0.00005 0.0005 0.0005 0.00005 0.00005 0.0005 0.0005 0.00005 0.00005 0.0005 0.0005 0.00005 0.00005 0.0005 0.0005 0.00005 0.00005'
[../]
[]
[Outputs]
exodus = true
[]