-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
325 lines (269 loc) · 14.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Project: Sea Ice Extent</title>
<link href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="css/bootstrap.min.css">
<link rel="stylesheet" href="css/slick.css" type="text/css" />
<link rel="stylesheet" href="css/templatemo-style.css">
<!--
TemplateMo 560 Astro Motion
https://templatemo.com/tm-560-astro-motion
-->
</head>
<body>
<video autoplay muted loop id="bg-video">
<source src="video/gfp-astro-timelapse.mp4" type="video/mp4">
</video>
<div class="page-container">
<div class="container-fluid">
<div class="row">
<div class="col-xs-12">
<div class="cd-slider-nav">
<nav class="navbar navbar-expand-lg" id="tm-nav">
<a class="navbar-brand" href="https://rafsanrubaiyat.github.io/#0">Rafsan Siddiqui</a>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar-supported-content" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbar-supported-content">
<ul class="navbar-nav mb-2 mb-lg-0">
<li class="nav-item selected">
<a class="nav-link" aria-current="page" href="https://rafsanrubaiyat.github.io/#0" data-no="1">Home</a>
<div class="circle"></div>
</li>
<li class="nav-item">
<a class="nav-link" href="https://rafsanrubaiyat.github.io/#0" data-no="2" class="btn btn-primary tm-intro-btn tm-page-link">Projects</a>
<div class="circle"></div>
</li>
<li class="nav-item">
<a class="nav-link" href="https://drive.google.com/file/d/1wNJqms_98WbEcal6RtZUSfwiCzLfsUY2/view" target="_blank" data-no="3">Resume</a>
<div class="circle"></div>
</li>
<li class="nav-item">
<a class="nav-link" href="https://rafsanrubaiyat.github.io/#0" data-no="4">About</a>
<div class="circle"></div>
</li>
<li class="nav-item">
<a class="nav-link" href="https://rafsanrubaiyat.github.io/#0" data-no="5">Contact</a>
<div class="circle"></div>
</li>
</ul>
</div>
</nav>
</div>
</div>
</div>
</div>
<div class="page-container">
<p> <br> <br>
<font size="+2">Statistical Data Analytics Case Study: <b> Extent of Ice Flow Over Time </b></font>
<br>
<font size="+1"><b> <br> Introduction: <br></b></font>
Sea ice extent is a measurement of the area of the ocean where ice covers at least 15 percent of the ocean surface, and sea
ice area only considers the parts of the ocean completely covered by ice (National Snow & Ice Data Center, n.d.). For
this case-study, the sea ice extent and area data for the north and south poles for each month have been acquired
separately from the National Snow & Ice Data Center website. Then they have been merged to a large csv data file
resulting in a time series dataset, which contains a total of 526 monthly observations of sea ice extent and area data from
November 1978 to August 2022. Then the time series data have been decomposed to its components, and regression
analyses have been conducted based on yearly and monthly movements in the sea ice extent value. <br>
<font size="+1"><b> <br> Data management: <br></b></font>
Out of the 526 monthly observations, 3 had bad data points. To resolve that issue, the dataset has been sorted based on
the month number and then backward filling (Velicer & Colby, 2005) has been used to fill the bad data points in the
dataset. So, the data points from December 1988 were injected into the bad data points of December 1987. The year and
the month columns of the dataset have been merged to get the ‘dates’ column. That would be a helpful date-type
independent variable to analyze the time-series data. The dataset looks like this:
<br>
<br />
<table cellspacing="0" cellpadding="0" border="0">
<tr>
<td style="text-align: center;">
<img src="images/Picture1.png" alt="" />
<div class="caption">Figure 1: Snippet of the sea extent dataset. </div>
<br />
</td>
</tr>
</table>
The ‘dates’ column has been made the index of the data-frame for the time series analysis. N_extent and S_extent
represents the extent of sea ice in the North and South pole respectively, N_area and S_area represents the sea ice areas.
<font size="+1"><b> <br> Data visualization and seasonality:<br></b></font>
To understand how the sea ice extent have been changing over the years, two separate plots have been generated with the
N_extent and S_extent data.
<br>
<br />
<table cellspacing="0" cellpadding="0" border="0">
<tr>
<td style="text-align: center;">
<img src="images/N_time.png" alt="" />
<div class="caption">Figure 2: Time series plot of North pole sea ice extent</div>
<br />
</td>
<td style="text-align: center;">
<img src="images/S_time.png" alt="" />
<div class="caption">Figure 3: Time series plot of South pole sea ice extent</div>
<br />
</td>
</tr>
</table>
These plots show that the sea ice extent in both the south pole and the north pole demonstrate a sinusoidal seasonality in
their data behavior. We can further investigate their seasonality by plotting the month-wise box plots.
<br> <br />
<table cellspacing="0" cellpadding="0" border="0">
<tr>
<td style="text-align: center;">
<img src="images/box_n.png" alt="" />
<div class="caption">Figure 4: Month-wise box-plot of North pole sea ice extent</div>
<br />
</td>
<td style="text-align: center;">
<img src="images/box_s.png" alt="" />
<div class="caption">Figure 5: Month-wise box-plot of South pole sea ice extent</div>
<br />
</td>
</tr>
</table>
The plots above signify two opposing characteristics of sea ice extent in the North and South pole. While N_extent is
maximum during the first three months of the year, S_extent is the minimum; also, N_extent is minimum during August
to October, and S_extent is maximum in that time period.
<font size="+1"><b> <br> Data decomposition: <br></b></font>
We need to decompose these data further to visualize the basic elements of any time series, which are:
Trend: A general, long-term, average tendency of the data to increase or decrease during the long time period.
Seasonality: Variations in the time series in short term (seasonal variation) or the cyclical variations in the time
series in long term (Cyclic Variations).
Random or Irregular movements (Residuals): The pure irregular and random movement in the time series
which is not explained by the trend.
<br> <br />
<table cellspacing="0" cellpadding="0" border="0">
<tr>
<td style="text-align: center;">
<img src="images/n_decom.png" alt="" />
<div class="caption">Figure 6: Time series decomposition of North pole sea ice extent </div>
<br />
</td>
<td style="text-align: center;">
<img src="images/s_decom.png" alt="" />
<div class="caption">Figure 7: Time series decomposition of South pole sea ice extent</div>
<br />
</td>
</tr>
</table>
It should be noted that, from the time series plot (run chart) of N_extent and S_extent, the seasonality and residual
components are independent of the trend, so the additive decomposition model has been followed rather than the
multiplicative model (Applied Time Series Analysis, n.d.).
<font size="+1"><b> <br> Trend:<br></b></font>
To analyze the time series data for increasing or decreasing trends, the Mann-Kendall Trend Test (sometimes called the
MK test) has been performed. Mann-Kendall test works for all distributions and the time series data doesn't have to meet
the assumption of normality (Mann, 1945; Kendall, 1955).
For the time series on N_extent, the result of the Mann-Kendall Test with alpha=0.05 are: trend='decreasing', h=True
(trend is present), p=2.51e-07 and slope=-0.00417. Also, the z (normalized test statistics), Tau (Kendall Tau) and s
(Mann-Kendal's score) values are negative, which proves that N_extent has been declining as the time forwards.
3
On the contrary, the result of the Mann-Kendall Test on the S_extent with alpha=0.05 are: trend = 'no trend', h=False,
p=0.511. The test didn’t show any trend in the S_extent time series.
Also, augmented Dickey–Fuller test (ADF) tests (Dickey & Fuller, 1979) have been conducted for the stationary test, and
the results signify that the mean and variance of N_extent vary largely over time while those of S_extent do not. In other
words, N_extent time series is non-stationary and S_extent time series is stationary.
<font size="+1"><b> <br> Regression analyses and forecasts:<br></b></font>
Two regression models have been developed for each of the time series data, with year and month as the independent
variables. For the yearly regressions, autoregressive integrated moving average (ARIMA) model (Box, Jenkins, &
Bacon, 1967) has been followed as there are fewer observations. For the monthly regressions, exponential smoothing
model (Crane & Crotty, 1967) has been followed which assigns exponentially decreasing weights as the observations get
older.
<br> <br />
<table cellspacing="0" cellpadding="0" border="0">
<tr>
<td style="text-align: center;">
<img src="images/N_monthly.png" alt="" />
<div class="caption">Figure 8: Monthly regression of North pole sea ice extent </div>
<br />
</td>
<td style="text-align: center;">
<img src="images/n_yearly.png" alt="" />
<div class="caption">Figure 9: Yearly regression of North pole sea ice extent</div>
<br />
</td>
</tr>
<tr>
<td style="text-align: center;">
<img src="images/n_monthly_forecast.png" alt="" />
<div class="caption">Figure 10: Monthly forecast of North pole sea ice extent </div>
<br />
</td>
<td style="text-align: center;">
<img src="images/s_monthly_forecast.png" alt="" />
<div class="caption">Figure 11: Monthly forecast of South pole sea ice extent </div>
<br />
</td>
</tr>
<tr>
<td style="text-align: center;">
<img src="images/S_monthly.png" alt="" />
<div class="caption">Figure 12: Monthly regression of South pole sea ice extent </div>
<br />
</td>
<td style="text-align: center;">
<img src="images/s_yearly.png" alt="" />
<div class="caption">Figure 13: Yearly regression of South pole sea ice extent</div>
<br />
</td>
</tr>
</table>
<br>
<br />
<table cellspacing="0" cellpadding="0" border="0">
<tr>
<td style="text-align: center;">
<img src="images/result.png" alt="" />
<div class="caption">Table 1: The fit statistics to evaluate the performance of the regression analyses</div>
<br />
</td>
</tr>
</table>
<br>
The residuals of the N_extent and S_extent data have also been diagnosed.
<br> <br />
<table cellspacing="0" cellpadding="0" border="0">
<tr>
<td style="text-align: center;">
<img src="images/n_res.png" alt="" />
<div class="caption">Figure 14: Residual data diagnostics of North pole sea ice extent
</div>
<br />
</td>
<td style="text-align: center;">
<img src="images/s res.png" alt="" />
<div class="caption">Figure 15: Residual data diagnostics of South pole sea ice extent
</div>
<br />
</td>
</tr>
</table>
<font size="+1"><b> <br> Conclusion:<br></b></font>
In this case study, two time series data on sea ice extent in the North pole and the South pole have been analyzed. Then,
yearly and monthly regression and forecast models have been developed. One interesting finding of this study is that
there is clear evidence of shrinkage of the sea ice extent in the north pole, but no trend could be established with the sea
ice extent in the south pole.
<font size="+1"><b> <br> References: <br></b></font>
<i>
Anderson, T. W. (2011). The statistical analysis of time series. John Wiley & Sons. <br>
Applied Time Series Analysis. (n.d.). Retrieved from Penn State University: https://online.stat.psu.edu/stat510/lesson/5/5.1 <br>
Box, G. E., Jenkins, G. M., & Bacon, D. W. (1967). Models for Forecasting Seasonal and Non-seasonal Time Series. . Wisconsin
Univ Madison Dept of Statistics. <br>
Crane, D. B., & Crotty, J. R. (1967). A two-stage forecasting model: Exponential smoothing and multiple regression. Management
Science, 13(8), B-501. <br>
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the
American statistical association, 74(366a), 427-431. <br>
Kendall, M. (1955.). Rank Correlation Methods. Griffin, London. <br>
Mann, H. (1945. ). Nonparametric tests against trend. Econometrica, 13, 245-259. <br>
National Snow & Ice Data Center. (n.d.). Retrieved from http://nsidc.org/arcticseaicenews/ <br>
Velicer, W. F., & Colby, S. M. (2005). A comparison of missing-data procedures for ARIMA time-series analysis. Educational and
Psychological Measurement, 65(4), 596-615. <br> <br> <br>
<font size="+2"><b> <a class="nav-link" href="https://github.com/rafsanRubaiyat/sea-ice-extent"
target="_blank" data-no="3">Link to the Github repository</a></b></font>
</i>
</p>
</div>
</body>
</html>