-
Notifications
You must be signed in to change notification settings - Fork 0
/
adjoint.cpp
143 lines (114 loc) · 3.61 KB
/
adjoint.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#include <iostream>
#include <vector>
#define N 4
using namespace std;
// Function to get cofactor of A[p][q] in temp[][]. n is
// current dimension of A[][]
void getCofactor(const vector<vector<int> >& A, vector<vector<int> >& temp,
int p, int q, int n) {
int i = 0, j = 0;
// Looping for each element of the matrix
for (int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
// Copying into temporary matrix only those
// element which are not in given row and column
if (row != p && col != q) {
temp[i][j++] = A[row][col];
// Row is filled, so increase row index and
// reset col index
if (j == n - 1) {
j = 0;
i++;
}
}
}
}
}
/* Recursive function for finding determinant of matrix.
n is current dimension of A[][]. */
int determinant(const vector<vector<int> >& A, int n) {
int D = 0; // Initialize result
// Base case : if matrix contains single element
if (n == 1) return A[0][0];
vector<vector<int> > temp(N, vector<int>(N)); // To store cofactors
int sign = 1; // To store sign multiplier
// Iterate for each element of first row
for (int f = 0; f < n; f++) {
// Getting Cofactor of A[0][f]
getCofactor(A, temp, 0, f, n);
D += sign * A[0][f] * determinant(temp, n - 1);
// terms are to be added with alternate sign
sign = -sign;
}
return D;
}
// Function to get adjoint of A[N][N] in adj[N][N].
void adjoint(const vector<vector<int> >& A, vector<vector<int> >& adj) {
if (N == 1) {
adj[0][0] = 1;
return;
}
// temp is used to store cofactors of A[][]
int sign = 1;
vector<vector<int> > temp(N, vector<int>(N));
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
// Get cofactor of A[i][j]
getCofactor(A, temp, i, j, N);
// sign of adj[j][i] positive if sum of row
// and column indexes is even.
sign = ((i + j) % 2 == 0) ? 1 : -1;
// Interchanging rows and columns to get the
// transpose of the cofactor matrix
adj[j][i] = (sign) * (determinant(temp, N - 1));
}
}
}
// Function to calculate and store inverse, returns false if
// matrix is singular
bool inverse(const vector<vector<int> >& A, vector<vector<float> >& inv) {
// Find determinant of A[][]
int det = determinant(A, N);
if (det == 0) {
cout << "Singular matrix, can't find its inverse";
return false;
}
// Find adjoint
vector<vector<int> > adj(N, vector<int>(N));
adjoint(A, adj);
// Find Inverse using formula "inverse(A) =
// adj(A)/det(A)"
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) inv[i][j] = adj[i][j] / float(det);
return true;
}
// Generic function to display the matrix. We use it to
// display both adjoint and inverse. adjoint is integer
// matrix and inverse is a float.
void display(const vector<vector<int> >& A) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) cout << A[i][j] << " ";
cout << endl;
}
}
void display(const vector<vector<float> >& A) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) printf("%.6f ", A[i][j]);
cout << endl;
}
}
// Driver program
int main() {
vector<vector<int> > A = {
{5, -2, 2, 7}, {1, 0, 0, 3}, {-3, 1, 5, 0}, {3, -1, -9, 4}};
vector<vector<int> > adj(N, vector<int>(N)); // To store adjoint of A[][]
vector<vector<float> > inv(N, vector<float>(N)); // To store inverse of A[][]
cout << "Input matrix is :\n";
display(A);
cout << "\nThe Adjoint is :\n";
adjoint(A, adj);
display(adj);
cout << "\nThe Inverse is :\n";
if (inverse(A, inv)) display(inv);
return 0;
}