Skip to content

Latest commit

 

History

History
40 lines (21 loc) · 1 KB

README.md

File metadata and controls

40 lines (21 loc) · 1 KB

Extract and analyse South Australia's rents data

Prerequisites and requirements

  • pip install -r requirements.txt

Extract data

  • python ./etl/download_rents_data.py

Transform and Load data

  • python ./etl/transform_rents_data.py

Analyse data

  • See the Jupyter notebook ./analyse_sa_rents_data.ipynb

  • 1 Bedroom flat median price trend for Adelaide City Adelaide 1 Bedroom Flat Median Price Trend

  • All data is stored in './clean_data' directory in CSV format (clean_data/sa_rents_data.csv) and in a DuckDB database file clean_data/sa_rents_data.duckdb.

  • DuckDB CLI can be used to query the data in the file clean_data/sa_rents_data.duckdb

    e.g.

    $ duckdb clean_data/sa_rents_data.duckdb
    
    D show tables;
    D select * from sa_rents_data limit 5;
    D .exit