-
Notifications
You must be signed in to change notification settings - Fork 1
/
036 Sudoku Solver.py
91 lines (77 loc) · 3.08 KB
/
036 Sudoku Solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
Write a program to solve a Sudoku puzzle by filling the empty cells.
Empty cells are indicated by the character '.'.
You may assume that there will be only one unique solution.
Author: Rajeev Ranjan
"""
class Solution:
def solveSudoku(self, board):
"""
Solve the Sudoku by modifying the input board in-place.
NP question: N-Queens, Combination Sum, Combinations, Permutations
:param board: a 9x9 2D array
:return: NIL
"""
# break board
for row in xrange(len(board)):
board[row] = list(board[row])
self.solve(board, 0, 0)
for row in xrange(len(board)):
board[row] = "".join(board[row])
def solve_TLE(self, board):
"""
:param board: a 9x9 2D array
:return: Boolean
"""
n = len(board)
if all([board[i/n][i%n]!="." for i in xrange(n*n)]):
return True
for i in xrange(n):
for j in xrange(n):
if board[i][j]==".":
for num in range(1, 10):
num_str = str(num)
# row
condition_row = all([board[i][col]!=num_str for col in xrange(n)])
# col
condition_col = all([board[row][j]!=num_str for row in xrange(n)])
# square
condition_square = all([board[i/3*3+count/3][j/3*3+count%3]!=num_str for count in xrange(n)])
if condition_col and condition_row and condition_square:
board[i][j] = num_str
if not self.solve(board):
board[i][j] = "."
else:
return True
return False
def solve(self, board, i, j):
"""
dfs
:param board: a 9x9 2D array
:return: Boolean
"""
if j>=9:
return self.solve(board, i+1, 0)
if i==9:
return True
if board[i][j]==".":
for num in range(1, 10):
num_str = str(num) # try number
# To speed up, use condition short-curcit.
# row, col, square
if all([board[i][col]!=num_str for col in xrange(9)]) and \
all([board[row][j]!=num_str for row in xrange(9)]) and \
all([board[i/3*3+count/3][j/3*3+count%3]!=num_str for count in xrange(9)]):
board[i][j] = num_str
if not self.solve(board, i, j+1):
board[i][j] = "." # restore, backtrack, save space
else:
return True
else:
return self.solve(board, i, j+1)
return False
if __name__=="__main__":
Solution().solveSudoku(
["..9748...", "7........", ".2.1.9...", "..7...24.", ".64.1.59.", ".98...3..", "...8.3.2.", "........6",
"...2759.."]
)