forked from black-shadows/LeetCode-Topicwise-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaximum-number-of-darts-inside-of-a-circular-dartboard.cpp
47 lines (45 loc) · 1.5 KB
/
maximum-number-of-darts-inside-of-a-circular-dartboard.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
// Time: O(n^2 * logn)
// Space: O(n)
// angle sweep solution
// great explanation:
// https://leetcode.com/problems/maximum-number-of-darts-inside-of-a-circular-dartboard/discuss/636345/Python-O(n3)-and-O(n2logn)-solution-explained-in-detail-with-pictures
class Solution {
public:
int numPoints(vector<vector<int>>& points, int r) {
int result = 0;
for (int i = 0; i < points.size(); ++i) {
result = max(result, countPoints(points, r, i));
}
return result;
}
private:
int countPoints(const vector<vector<int>>& points, int r, int i) {
vector<pair<double, bool>> angles;
for (int j = 0; j < points.size(); ++j) {
if (j == i) {
continue;
}
int dx = points[i][0] - points[j][0];
int dy = points[i][1] - points[j][1];
const auto d = sqrt(dx * dx + dy * dy);
if (d > 2 * r) {
continue;
}
const auto delta = acos(d / (2 * r));
const auto angle = atan2(dy, dx);
angles.emplace_back(angle - delta, false);
angles.emplace_back(angle + delta, true);
}
sort(begin(angles), end(angles));
int result = 1, count = 1;
for (const auto& [_, is_closed] : angles) { // angle sweep
if (!is_closed) {
++count;
} else {
--count;
}
result = max(result, count);
}
return result;
}
};