forked from black-shadows/LeetCode-Topicwise-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimum-incompatibility.cpp
277 lines (266 loc) · 10.4 KB
/
minimum-incompatibility.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Time: O(max(n * 2^n, 3^n))
// Space: O(2^n)
class Solution {
public:
int minimumIncompatibility(vector<int>& nums, int k) {
const vector<int> candidates = findCandidates(nums, k); // Time: O(n * 2^n)
const int total = (1 << size(nums)) - 1;
vector<int> dp(total + 1, numeric_limits<int>::max());
dp[0] = 0;
for (int mask = 0; mask <= total; ++mask) { // Time: O(3^n)
if (__builtin_popcount(mask) % (size(nums) / k) != 0) {
continue;
}
// submask enumeration:
// => sum(nCr(n, k) * 2^k for k in xrange(n+1)) = (1 + 2)^n = 3^n
// => Time: O(3^n), see https://cp-algorithms.com/algebra/all-submasks.html
for (int submask = mask; submask; submask = (submask - 1) & mask) {
if (candidates[submask] == numeric_limits<int>::max() ||
dp[mask - submask] == numeric_limits<int>::max()) {
continue;
}
dp[mask] = min(dp[mask], dp[mask - submask] + candidates[submask]);
}
}
return dp.back() != numeric_limits<int>::max() ? dp.back() : -1;
}
private:
vector<int> findCandidates(const vector<int>& nums, int k) {
const int total = (1 << size(nums)) - 1;
vector<int> result(total + 1, numeric_limits<int>::max());
for (int mask = 0; mask <= total; ++mask) {
if (__builtin_popcount(mask) != size(nums) / k) {
continue;
}
int lookup = 0;
int mx = 0, mn = numeric_limits<int>::max();
bool duplicated = false;
for (int i = 0; i < size(nums); ++i) {
if ((mask & (1 << i)) == 0) {
continue;
}
if (lookup & (1 << nums[i])) {
duplicated = true;
break;
}
lookup |= (1 << nums[i]);
mx = max(mx, nums[i]);
mn = min(mn, nums[i]);
}
if (duplicated) {
continue;
}
result[mask] = mx - mn;
}
return result;
}
};
// Time: O(sum(i*d * nCr(i*d, d) * nCr(n, i*d) for i in xrange(1, k+1))) < O(sum(n * 2^m * nCr(n, m) for m in xrange(n+1))) = O(n * 3^n)
// Space: O(n * k)
class Solution_TLE {
public:
int minimumIncompatibility(vector<int>& nums, int k) {
unordered_map<string, int> lookup;
int result = backtracking(nums, size(nums) / k, &lookup);
return result != numeric_limits<int>::max() ? result : -1;
}
private:
int backtracking(const vector<int>& nums, int d, unordered_map<string, int> *lookup) {
if (empty(nums)) {
return 0;
}
string k = key(nums);
if (!lookup->count(k)) {
int ret = numeric_limits<int>::max();
combinations(size(nums), d,
[this, &nums, &d, &lookup, &ret](const vector<int>& idxs) {
unordered_set<int> new_nums_set;
for (const auto& idx : idxs) {
new_nums_set.emplace(nums[idx]);
}
if (size(new_nums_set) < d) {
return;
}
int mx = *max_element(cbegin(new_nums_set), cend(new_nums_set));
int mn = *min_element(cbegin(new_nums_set), cend(new_nums_set));
vector<int> left;
for (const auto& num : nums) {
if (new_nums_set.count(num)) {
new_nums_set.erase(num);
continue;
}
left.emplace_back(num);
}
int result = backtracking(left, d, lookup);
if (result != numeric_limits<int>::max()) {
ret = min(ret, mx - mn + result);
}
});
(*lookup)[k] = ret;
}
return (*lookup)[k];
}
string key(const vector<int>& nums) {
string result;
for (const auto& num : nums) {
result += to_string(num);
result.push_back(',');
}
return result;
}
void combinations(int n, int k, const function<void (const vector<int>&)>& callback) {
static const auto& next_pos =
[](const auto& n, const auto& k, const auto& idxs) {
int i = k - 1;
for (; i >= 0; --i) {
if (idxs[i] != i + n - k) {
break;
}
}
return i;
};
vector<int> idxs(k);
iota(begin(idxs), end(idxs), 0);
callback(idxs);
for (int i; (i = next_pos(n, k, idxs)) >= 0;) {
++idxs[i];
for (int j = i + 1; j < k; ++j) {
idxs[j] = idxs[j - 1] + 1;
}
callback(idxs);
}
}
};
// Time: O(nlogn)
// Space: O(n)
// wrong with greedy solution
// nums = [15, 9, 7, 10, 15, 14, 12, 2, 10, 8, 10, 13, 4, 11, 2]
// k = 5
// greedy => [[2, 4, 7], [2, 8, 9], [10, 11, 12], [10, 13, 15], [10, 14, 15]] => 24
// correct => [[2, 4, 7], [2, 8, 10], [9, 10, 11], [10, 12, 15], [13, 14, 15]] => 22
// optimized from Solution_Wrong_Greedy
class Solution_Wrong_Greedy_Map {
public:
int minimumIncompatibility(vector<int>& nums, int k) {
return min(greedy<less<int>>(nums, k), greedy<greater<int>>(nums, k)); // two possible minimas
}
private:
template<typename T>
int greedy(const vector<int>& nums, int k) {
map<int, int, T> count;
for (const auto& num : nums) {
++count[num];
}
unordered_map<int, list<int>> freq_to_nodes;
unordered_map<int, list<int>::iterator> key_to_nodeit;
for (const auto& [x, cnt] : count) {
freq_to_nodes[cnt].emplace_back(x);
key_to_nodeit[x] = prev(end(freq_to_nodes[cnt]));
if (cnt > k) {
return -1;
}
}
vector<vector<int>> stks(k);
int curr = 0;
while (!empty(count)) { // the while loop runs O(k) times
if (freq_to_nodes.count(size(stks) - curr)) { // fill the deterministic elements into the remaining subsets
for (const auto& x : freq_to_nodes[size(stks) - curr]) { // total time = O(n)
for (int i = curr; i < size(stks); ++i) {
stks[i].emplace_back(x);
}
key_to_nodeit.erase(x);
count.erase(x);
}
freq_to_nodes.erase(size(stks) - curr);
}
// greedily fill the contiguous ordered elements into the first vacant subset until it is full,
// otherwise, the result sum would get larger => in fact, this is wrong
vector<int> to_delete;
for (auto& [x, cnt] : count) {
stks[curr].emplace_back(x);
freq_to_nodes[cnt].erase(key_to_nodeit[x]);
if (empty(freq_to_nodes[cnt])) {
freq_to_nodes.erase(cnt);
}
--cnt; // total time = O(n)
if (!cnt) {
key_to_nodeit.erase(x);
to_delete.emplace_back(x);
} else {
freq_to_nodes[cnt].emplace_back(x);
key_to_nodeit[x] = prev(end(freq_to_nodes[cnt]));
}
if (size(stks[curr]) == size(nums) / k) {
++curr;
break;
}
}
for (const auto& x : to_delete) {
count.erase(x); // total time = O(nlogn)
}
}
return accumulate(cbegin(stks), cend(stks), 0,
[](const auto& a, const auto& b) {
return a + (*max_element(cbegin(b), cend(b)) - *min_element(cbegin(b), cend(b)));
});
}
};
// Time: O(nlogn + k * n)
// Space: O(n)
// wrong with greedy solution
// nums = [15, 9, 7, 10, 15, 14, 12, 2, 10, 8, 10, 13, 4, 11, 2]
// k = 5
// greedy => [[2, 4, 7], [2, 8, 9], [10, 11, 12], [10, 13, 15], [10, 14, 15]] => 24
// correct => [[2, 4, 7], [2, 8, 10], [9, 10, 11], [10, 12, 15], [13, 14, 15]] => 22
class Solution_Wrong_Greedy {
public:
int minimumIncompatibility(vector<int>& nums, int k) {
return min(greedy<less<int>>(nums, k), greedy<greater<int>>(nums, k)); // two possible minimas
}
private:
template<typename T>
int greedy(const vector<int>& nums, int k) {
map<int, int, T> count;
for (const auto& num : nums) {
++count[num];
}
for (const auto& [_, cnt] : count) {
if (cnt > k) {
return -1;
}
}
vector<vector<int>> stks(k);
int curr = 0;
int remain = size(nums);
while (remain) { // the while loop runs O(k) times, and the inner loops runs O(n) times
for (auto& [x, cnt] : count) { // fill the deterministic elements into the remaining subsets
if (cnt != size(stks) - curr) {
continue;
}
for (int i = curr; i < size(stks); ++i) {
stks[i].emplace_back(x);
}
remain -= cnt;
cnt = 0;
}
// greedily fill the contiguous ordered elements into the first vacant subset until it is full,
// otherwise, the result sum would get larger => in fact, this is wrong
for (auto& [x, cnt] : count) {
if (!cnt) {
continue;
}
stks[curr].emplace_back(x);
--remain;
--cnt;
if (size(stks[curr]) == size(nums) / k) {
++curr;
break;
}
}
}
return accumulate(cbegin(stks), cend(stks), 0,
[](const auto& a, const auto& b) {
return a + (*max_element(cbegin(b), cend(b)) - *min_element(cbegin(b), cend(b)));
});
}
};