forked from black-shadows/LeetCode-Topicwise-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaximum-non-negative-product-in-a-matrix.py
27 lines (26 loc) · 1.13 KB
/
maximum-non-negative-product-in-a-matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Time: O(m * n)
# Space: O(n)
# dp with rolling window
class Solution(object):
def maxProductPath(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
MOD = 10**9+7
max_dp = [[0]*len(grid[0]) for _ in xrange(2)]
min_dp = [[0]*len(grid[0]) for _ in xrange(2)]
for i in xrange(len(grid)):
for j in xrange(len(grid[i])):
if i == 0 and j == 0:
max_dp[i%2][j] = min_dp[i%2][j] = grid[i][j]
continue
curr_max = max(max_dp[(i-1)%2][j] if i > 0 else max_dp[i%2][j-1],
max_dp[i%2][j-1] if j > 0 else max_dp[(i-1)%2][j])
curr_min = min(min_dp[(i-1)%2][j] if i > 0 else min_dp[i%2][j-1],
min_dp[i%2][j-1] if j > 0 else min_dp[(i-1)%2][j])
if grid[i][j] < 0:
curr_max, curr_min = curr_min, curr_max
max_dp[i%2][j] = curr_max*grid[i][j]
min_dp[i%2][j] = curr_min*grid[i][j]
return max_dp[(len(grid)-1)%2][-1]%MOD if max_dp[(len(grid)-1)%2][-1] >= 0 else -1