-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathablate.py
180 lines (159 loc) · 6.87 KB
/
ablate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import pickle as pkl
import torch
import pandas as pd
from sklearn.metrics import accuracy_score
from sklearn.cluster import KMeans
from sklearn.metrics import davies_bouldin_score ,silhouette_score,accuracy_score,roc_auc_score
from collections import OrderedDict
import numpy as np
from plain_model_dist import model_builder
from data_iterators.batch_iterators import test_iterator
from testCode import test_bias_iterator
from tqdm import tqdm
import pdb
def get_output(self,input,output):
#this is uses as a layer hook to figure out what the output dimensionality of a layer is.
#There might be a better approach to figure out dimensions but i'm not sure
self.out_vec = output
#similarity code
def flatten_weights(ws):
#helper method to flatten weight's into vector for similairty comparison .
w_mat = list()
for e in range(ws.shape[0]):
vec = ws[e].reshape(1,-1).cpu()
norm = torch.norm(vec)
w_mat.append(vec/norm)
return torch.cat(w_mat)
#layer code
def find_conv_layers(model):
conv_layers= OrderedDict()
for name, layer in model.named_modules():
if isinstance(layer, torch.nn.Conv2d):
conv_layers[name] = layer
return conv_layers
def get_layer_mask(model,layer,sample_input,perc):
#figure out masking policy for a certain layer
# start by identifying similar weight groups
weights = layer.weight
num_filts = weights.shape[0]
flat = flatten_weights(layer.weight)
group_l = find_best_k(flat,mode='perc',perc=perc)
return group_l
#change clustering to be the one from datamining
def find_best_k(w_mat,mode='perc',perc=None):
# we need to identify a consistent group of layer features
#this searches for clusters 2 through 10
#return the group labels for the layers and the number of groups
if mode=='perc':
group_l = get_weight_2_drop(w_mat,perc)
else:
group_l = list()
group_m = list()
indeces = list()
for i in range(2,20):
group_l.append(find_groups(w_mat,i))
group_m.append(silhouette_score(w_mat,group_l[-1],metric='euclidean'))
indeces.append(i)
ideal = np.where(group_m == np.min(group_m))[0][0]
pdb.set_trace()
group_l = group_l[ideal]
return group_l
def get_per_group_distance(x_val,group_labels):
n_labels = np.unique(group_labels)
for e in n_labels:
simi = torch.zeros((x_val.shape[0],x_val.shape[0]),requires_grad=False)
pdist = torch.nn.PairwiseDistance(p=2)
sub_val = x_val[group_labels==e,:]
for i in range(x_val.shape[0]):
for j in range(x_val.shape[0]):
simi[i,j] = pdist(sub_val[i].reshape(1,-1),sub_val[j].reshape(1,-1))
simi = simi.detach()
simi_sum = torch.sum(s)
pass
def find_groups(w_mat,num_k):
#given a matrix of weights. Cluster them using euclidean distance
# approach similar to what ablation study does
clust = KMeans(n_clusters=num_k)
groups = clust.fit_predict(w_mat)
return groups
def get_weight_similarity(weights):
#given the list of weights we had obtained calculate similarity matrix
# similarity metric is l2 distance of normalized weights
w_shape = weights.shape[0]
simi = torch.zeros((w_shape,w_shape),requires_grad=False)
pdist = torch.nn.PairwiseDistance(p=2)
for i in range(w_shape):
for j in range(w_shape):
simi[i,j]= pdist(weights[i].reshape(1,-1),weights[j].reshape(1,-1))
simi = simi.detach()
simi_sum = torch.sum(simi,dim=1).numpy().reshape(-1,1)
return simi_sum
def get_weight_2_drop(weights,percentage):
import pdb
sim_scores = get_weight_similarity(weights) #get similarity measuree
indeces = sim_scores.argsort(axis=0) # sort similarity measure in increasing order.
samples = np.hstack([sim_scores,indeces])
sorted_sample = samples[np.argsort(samples[:,0],axis=0),:][::-1]
percentage_interest = percentage
num_samples = int(samples.shape[0]*percentage_interest) # get relative amount to use
to_null = sorted_sample[0:num_samples,1].astype(np.int16) # get indices of top n corelated
#pdb.set_trace()
return to_null # these will be the items set to zero
def ablation_study(model,loader,mask_dict,mode='demo',groundTruthDf=None,model_name=None,weight_path=None,num_task_classes=None):
layers_interest_names = find_conv_layers(model).keys()
avg_contribs = list()
for i,e in tqdm(enumerate(layers_interest_names),total=len(layers_interest_names)):
model = reload_model(model_name,weight_path,num_task_classes,cuda_str="cuda:0")
model.eval()
layers_interest = find_conv_layers(model)
contribs = get_layer_contribs(model,layers_interest,i,loader,mask_dict,mode,groundTruthDf)
print(contribs)
avg_contribs.append(contribs)
return layers_interest.keys(),avg_contribs
def get_out_shape(self, input, output):
#This is meant for the forwad hook
#records the output of a particular layer
self.out_dim = output.shape
def get_layer_contribs(model,layer_list,layer_idx,loader,mask_dict,mode,ground_truths,device='cuda'):
#mode should either be demo or task
"""
trying to adapt this debiasing code here
doing modificaiton where i pass in the original ground truths file
"""
for i,e in enumerate(layer_list.keys()):
if i< layer_idx:
continue
layer_mask = mask_dict[e]
for filt_k in layer_mask:
layer_list[e].weight[filt_k].copy_(torch.zeros_like( layer_list[e].weight[filt_k]))
if mode=='task':
output = test_iterator(model,loader,'cuda')
else:
output = test_bias_iterator(model,loader,'cuda')
combined = pd.merge(output,ground_truths,left_on='png_path',right_on='file')
combined['malignancy_pred']=combined[['Task_0','Task_1']].values.argmax(axis=1)
if mode=='demo':
acc = calc_metrics(combined['Race'],combined['RacePred'])
else:
acc = accuracy_score(combined['labels']==1,combined['malignancy_pred']==1)
return acc
def get_uni_contribs(layer_mask,attr):
groups = np.unique(layer_mask.cpu())
layer_mask = layer_mask.cpu()
contribs = list()
for e in groups:
thigns = layer_mask[:,:,0,0]
i_want = np.where(thigns==e)[1] # use one because you idx columns
contrib = np.unique(attr[0,i_want,:,:])
contribs.append(contrib)
contribs = np.array(contribs)
return np.mean(np.abs(contribs))
def calc_metrics(true_labels,preds):
return accuracy_score(true_labels,preds)
def reload_model(model_name,weight_path,num_task_classes,cuda_str):
model = model_builder(model_name=model_name,
num_task_classes=num_task_classes,
model_weight=weight_path,num_layers=0).to(cuda_str)
for e in model.parameters():
e.requires_grad = False
return model