-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuntitled0.py
138 lines (106 loc) · 4.4 KB
/
untitled0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from __future__ import absolute_import, division, print_function
import tensorflow as tf
import numpy as np
import cv2
import os
from random import shuffle
import pickle
tf.logging.set_verbosity(tf.logging.INFO)
DataDir="English/Fnt"
Categories=["Zero","One","Two","Three","Four","Five","Six","Seven","Eight","Nine",
"A-Capital","B-Capital","C-Capital","D-Capital","E-Capital","F-Capital","G-Capital","H-Capital","I-Capital",
"J-Capital","K-Capital","L-Capital","M-Capital","N-Capital","O-Capital","P-Capital","Q-Capital","R-Capital",
"S-Capital","T-Capital","U-Capital","V-Capital","W-Capital","X-Capital","Y-Capital","Z-Capital",
"a-Small","b-Small","c-Small","d-Small","e-Small","f-Small","g-Small","h-Small","i-Small","j-Small","k-Small",
"l-Small","m-Small","n-Small","o-Small","p-Small","q-Small","r-Small","s-Small","t-Small",
"u-Small","v-Small","w-Small","x-Small","y-Small","z-Small"]
training_data=[]
image_size=50
x_train=[]
y_train=[]
x_test=[]
y_test=[]
def create_trainig_data():
for category in Categories:
path=os.path.join(DataDir,category)
class_num=Categories.index(category)
for img in os.listdir(path):
img_array=cv2.imread(os.path.join(path,img), cv2.IMREAD_GRAYSCALE)
new_array=cv2.resize(img_array,(image_size,image_size))
training_data.append([new_array,class_num])
create_trainig_data()
shuffle(training_data)
#for features,label in training_data:
# x.append(features)
# labels.append(label)
train=training_data[:52000]
test=training_data[52000:]
for features,label in train:
x_train.append(features)
y_train.append(label)
for features,label in test:
x_test.append(features)
y_test.append(label)
def cnn_model_fn(features, labels, mode):
"""Model function for CNN."""
# Input Layer
input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=1)
# Convolutional Layer #2 and Pooling Layer #2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=1)
# Dense Layer
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
# Logits Layer
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])
}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={"x": x_train},
y=y_train,
batch_size=100,
num_epochs=2,
shuffle=True)
eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={"x": x_test}, y=y_test, num_epochs=1, shuffle=False)
eval_results=training_data.evaluate(eval_input_fn)
print(eval_results)