-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFTCS.py
36 lines (33 loc) · 1.15 KB
/
FTCS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from pylab import *
from mpl_toolkits.mplot3d import Axes3D
# Forwards Time, Center Space method for solving system of PDEs
# FTCS applies Euler's Method in time, centered second order fin diff in space
# Inputs
# M : number of space steps
# N : number of time steps
# Output
# Plot of numerical solution to PDE
def FTCS(M,N):
# initialize space and time mesh
x = linspace(0,1,M+1)
t = linspace(0,1,N+1)
X, T = meshgrid(x,t,indexing='ij')
# define space and time steps
h = 1/M
k = 1/N
# intialize initial conditions for t0
u = zeros((M+1,N+1))
u[:,0] = sin(pi*x)**2
# initialize finite difference matrix in space
Ah = (2*eye(M-1) - eye(M-1,k=1) - eye(M-1,k=-1))/h**2
# apply method iteratively
for n in range(N):
u[1:M,n+1] = u[1:M,n] - k*Ah @ u[1:M,n]
# plot solution
fig = figure()
ax = Axes3D(fig)
ax.plot_surface(X,T,u,rstride=int(ceil(M/10)),cstride=int(ceil(N/10)))
plt.title("M =" + str(M), loc = 'left')
plt.title("N =" + str(N), loc = 'right')