-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymplecticEuler.py
52 lines (46 loc) · 1.38 KB
/
symplecticEuler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
import math
# Symplectic Euler Method(s) for solving Hamiltonian Equations
# Inputs
# f : ODE (must be part of Hamiltonian)
# g : ODE ( " " )
# q0: initial condition 1
# p0: initial condition 2
# Outputs
# q : array containing num approx of Hamiltonian
# p : array " "
def symplecticEuler1(f, g, q0, p0, h):
N = int(1/h) # calculate num steps from step size
q = np.zeros((N+1, np.size(q0))) # initialize output array
p = np.zeros((N+1, np.size(p0))) # initialize second output array
q[0] = q0
p[0] = p0
for n in range(N):
q[n+1] = q[n] + h*f(p[n])
p[n+1] = p[n] + h*g(q[n+1]) #modify second line to use q[n+1] term
return q, p
# sE2 is identical to sE1
# only vary in calculating q(n+1) or p(n+1) first
def symplecticEuler2(f, g, q0, p0, h):
N = int(1/h)
q = np.zeros((N+1, np.size(q0)))
p = np.zeros((N+1, np.size(p0)))
q[0] = q0
p[0] = p0
for n in range(N):
# Invert q, p lines
p[n+1] = p[n] + h*g(q[n])
q[n+1] = q[n] + h*f(p[n+1]) #modify q to use p[n+1] term
return q, p
# Sample Hamiltonian ODE (simple harmonic oscillator)
def f(p):
return p
def g(q):
return -q
# Sample Hamiltonian ODE (simple pendulum)
def func(p):
return p
def func2(q):
return -math.sin(q)