-
Notifications
You must be signed in to change notification settings - Fork 78
/
dataset.py
125 lines (93 loc) · 3.53 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import glob
from sklearn.utils import shuffle
import numpy as np
import scipy.signal as signal
def load_train(train_path, classes):
samples = []
labels = []
sample_names = []
cls = []
for fields in classes:
index = classes.index(fields)
path = os.path.join(train_path, fields, '*.npy')
files = glob.glob(path)
for fl in files:
iq_samples = np.load(fl)
real = np.real(iq_samples)
imag = np.imag(iq_samples)
# iq_samples = np.concatenate((real, imag))
# iq_samples = np.reshape(iq_samples, (-1, 2, 3200))
iq_samples = []
for i in range(0, np.ma.count(real) - 212): # 128*192 magic
iq_samples.append(real[i])
iq_samples.append(imag[i])
iq_samples = np.reshape(iq_samples, (-1, 128, 2))
samples.append(iq_samples)
label = np.zeros(len(classes))
label[index] = 1.0
labels.append(label)
flbase = os.path.basename(fl)
sample_names.append(flbase)
cls.append(fields)
samples = np.array(samples)
labels = np.array(labels)
sample_names = np.array(sample_names)
cls = np.array(cls)
return samples, labels, sample_names, cls
class DataSet(object):
def __init__(self, images, labels, img_names, cls):
self._num_examples = images.shape[0]
self._images = images
self._labels = labels
self._img_names = img_names
self._cls = cls
self._epochs_done = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def img_names(self):
return self._img_names
@property
def cls(self):
return self._cls
@property
def num_examples(self):
return self._num_examples
@property
def epochs_done(self):
return self._epochs_done
def next_batch(self, batch_size):
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
self._epochs_done += 1
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end], self._img_names[start:end], self._cls[start:end]
def read_train_sets(train_path, classes, validation_size):
class DataSets(object):
pass
data_sets = DataSets()
images, labels, img_names, cls = load_train(train_path, classes)
images, labels, img_names, cls = shuffle(images, labels, img_names, cls)
if isinstance(validation_size, float):
validation_size = int(validation_size * images.shape[0])
validation_images = images[:validation_size]
validation_labels = labels[:validation_size]
validation_img_names = img_names[:validation_size]
validation_cls = cls[:validation_size]
train_images = images[validation_size:]
train_labels = labels[validation_size:]
train_img_names = img_names[validation_size:]
train_cls = cls[validation_size:]
data_sets.train = DataSet(train_images, train_labels, train_img_names, train_cls)
data_sets.valid = DataSet(validation_images, validation_labels, validation_img_names, validation_cls)
return data_sets