diff --git a/cpp/src/io/parquet/decode_fixed.cu b/cpp/src/io/parquet/decode_fixed.cu index 4522ea7fe56..45380e6ea20 100644 --- a/cpp/src/io/parquet/decode_fixed.cu +++ b/cpp/src/io/parquet/decode_fixed.cu @@ -37,7 +37,14 @@ struct block_scan_results { }; template -static __device__ void scan_block_exclusive_sum(int thread_bit, block_scan_results& results) +using block_scan_temp_storage = int[decode_block_size / cudf::detail::warp_size]; + +// Similar to CUB, must __syncthreads() after calling if reusing temp_storage +template +__device__ inline static void scan_block_exclusive_sum( + int thread_bit, + block_scan_results& results, + block_scan_temp_storage& temp_storage) { int const t = threadIdx.x; int const warp_index = t / cudf::detail::warp_size; @@ -45,15 +52,19 @@ static __device__ void scan_block_exclusive_sum(int thread_bit, block_scan_resul uint32_t const lane_mask = (uint32_t(1) << warp_lane) - 1; uint32_t warp_bits = ballot(thread_bit); - scan_block_exclusive_sum(warp_bits, warp_lane, warp_index, lane_mask, results); + scan_block_exclusive_sum( + warp_bits, warp_lane, warp_index, lane_mask, results, temp_storage); } +// Similar to CUB, must __syncthreads() after calling if reusing temp_storage template -__device__ static void scan_block_exclusive_sum(uint32_t warp_bits, - int warp_lane, - int warp_index, - uint32_t lane_mask, - block_scan_results& results) +__device__ static void scan_block_exclusive_sum( + uint32_t warp_bits, + int warp_lane, + int warp_index, + uint32_t lane_mask, + block_scan_results& results, + block_scan_temp_storage& temp_storage) { // Compute # warps constexpr int num_warps = decode_block_size / cudf::detail::warp_size; @@ -64,49 +75,64 @@ __device__ static void scan_block_exclusive_sum(uint32_t warp_bits, results.thread_count_within_warp = __popc(results.warp_bits & lane_mask); // Share the warp counts amongst the block threads - __shared__ int warp_counts[num_warps]; - if (warp_lane == 0) { warp_counts[warp_index] = results.warp_count; } - __syncthreads(); + if (warp_lane == 0) { temp_storage[warp_index] = results.warp_count; } + __syncthreads(); // Sync to share counts between threads/warps // Compute block-wide results results.block_count = 0; results.thread_count_within_block = results.thread_count_within_warp; for (int warp_idx = 0; warp_idx < num_warps; ++warp_idx) { - results.block_count += warp_counts[warp_idx]; - if (warp_idx < warp_index) { results.thread_count_within_block += warp_counts[warp_idx]; } + results.block_count += temp_storage[warp_idx]; + if (warp_idx < warp_index) { results.thread_count_within_block += temp_storage[warp_idx]; } } } -template -__device__ inline void gpuDecodeFixedWidthValues( +template +__device__ void gpuDecodeFixedWidthValues( page_state_s* s, state_buf* const sb, int start, int end, int t) { constexpr int num_warps = block_size / cudf::detail::warp_size; constexpr int max_batch_size = num_warps * cudf::detail::warp_size; - PageNestingDecodeInfo* nesting_info_base = s->nesting_info; - int const dtype = s->col.physical_type; + // nesting level that is storing actual leaf values + int const leaf_level_index = s->col.max_nesting_depth - 1; + auto const data_out = s->nesting_info[leaf_level_index].data_out; + + int const dtype = s->col.physical_type; + uint32_t const dtype_len = s->dtype_len; + + int const skipped_leaf_values = s->page.skipped_leaf_values; // decode values int pos = start; while (pos < end) { int const batch_size = min(max_batch_size, end - pos); - int const target_pos = pos + batch_size; - int const src_pos = pos + t; + int const thread_pos = pos + t; - // the position in the output column/buffer - int dst_pos = sb->nz_idx[rolling_index(src_pos)] - s->first_row; + // Index from value buffer (doesn't include nulls) to final array (has gaps for nulls) + int const dst_pos = [&]() { + int dst_pos = sb->nz_idx[rolling_index(thread_pos)]; + if constexpr (!has_lists_t) { dst_pos -= s->first_row; } + return dst_pos; + }(); // target_pos will always be properly bounded by num_rows, but dst_pos may be negative (values // before first_row) in the flat hierarchy case. - if (src_pos < target_pos && dst_pos >= 0) { + if (thread_pos < target_pos && dst_pos >= 0) { // nesting level that is storing actual leaf values - int const leaf_level_index = s->col.max_nesting_depth - 1; - uint32_t dtype_len = s->dtype_len; - void* dst = - nesting_info_base[leaf_level_index].data_out + static_cast(dst_pos) * dtype_len; + // src_pos represents the logical row position we want to read from. But in the case of + // nested hierarchies (lists), there is no 1:1 mapping of rows to values. So src_pos + // has to take into account the # of values we have to skip in the page to get to the + // desired logical row. For flat hierarchies, skipped_leaf_values will always be 0. + int const src_pos = [&]() { + if constexpr (has_lists_t) { return thread_pos + skipped_leaf_values; } + return thread_pos; + }(); + + void* const dst = data_out + (static_cast(dst_pos) * dtype_len); + if (s->col.logical_type.has_value() && s->col.logical_type->type == LogicalType::DECIMAL) { switch (dtype) { case INT32: gpuOutputFast(s, sb, src_pos, static_cast(dst)); break; @@ -145,15 +171,15 @@ __device__ inline void gpuDecodeFixedWidthValues( } } -template +template struct decode_fixed_width_values_func { __device__ inline void operator()(page_state_s* s, state_buf* const sb, int start, int end, int t) { - gpuDecodeFixedWidthValues(s, sb, start, end, t); + gpuDecodeFixedWidthValues(s, sb, start, end, t); } }; -template +template __device__ inline void gpuDecodeFixedWidthSplitValues( page_state_s* s, state_buf* const sb, int start, int end, int t) { @@ -161,10 +187,15 @@ __device__ inline void gpuDecodeFixedWidthSplitValues( constexpr int num_warps = block_size / warp_size; constexpr int max_batch_size = num_warps * warp_size; - PageNestingDecodeInfo* nesting_info_base = s->nesting_info; - int const dtype = s->col.physical_type; - auto const data_len = thrust::distance(s->data_start, s->data_end); - auto const num_values = data_len / s->dtype_len_in; + // nesting level that is storing actual leaf values + int const leaf_level_index = s->col.max_nesting_depth - 1; + auto const data_out = s->nesting_info[leaf_level_index].data_out; + + int const dtype = s->col.physical_type; + auto const data_len = thrust::distance(s->data_start, s->data_end); + auto const num_values = data_len / s->dtype_len_in; + + int const skipped_leaf_values = s->page.skipped_leaf_values; // decode values int pos = start; @@ -172,21 +203,34 @@ __device__ inline void gpuDecodeFixedWidthSplitValues( int const batch_size = min(max_batch_size, end - pos); int const target_pos = pos + batch_size; - int const src_pos = pos + t; + int const thread_pos = pos + t; // the position in the output column/buffer - int dst_pos = sb->nz_idx[rolling_index(src_pos)] - s->first_row; + // Index from value buffer (doesn't include nulls) to final array (has gaps for nulls) + int const dst_pos = [&]() { + int dst_pos = sb->nz_idx[rolling_index(thread_pos)]; + if constexpr (!has_lists_t) { dst_pos -= s->first_row; } + return dst_pos; + }(); // target_pos will always be properly bounded by num_rows, but dst_pos may be negative (values // before first_row) in the flat hierarchy case. - if (src_pos < target_pos && dst_pos >= 0) { - // nesting level that is storing actual leaf values - int const leaf_level_index = s->col.max_nesting_depth - 1; + if (thread_pos < target_pos && dst_pos >= 0) { + // src_pos represents the logical row position we want to read from. But in the case of + // nested hierarchies (lists), there is no 1:1 mapping of rows to values. So src_pos + // has to take into account the # of values we have to skip in the page to get to the + // desired logical row. For flat hierarchies, skipped_leaf_values will always be 0. + int const src_pos = [&]() { + if constexpr (has_lists_t) { + return thread_pos + skipped_leaf_values; + } else { + return thread_pos; + } + }(); - uint32_t dtype_len = s->dtype_len; - uint8_t const* src = s->data_start + src_pos; - uint8_t* dst = - nesting_info_base[leaf_level_index].data_out + static_cast(dst_pos) * dtype_len; + uint32_t const dtype_len = s->dtype_len; + uint8_t const* const src = s->data_start + src_pos; + uint8_t* const dst = data_out + static_cast(dst_pos) * dtype_len; auto const is_decimal = s->col.logical_type.has_value() and s->col.logical_type->type == LogicalType::DECIMAL; @@ -239,11 +283,11 @@ __device__ inline void gpuDecodeFixedWidthSplitValues( } } -template +template struct decode_fixed_width_split_values_func { __device__ inline void operator()(page_state_s* s, state_buf* const sb, int start, int end, int t) { - gpuDecodeFixedWidthSplitValues(s, sb, start, end, t); + gpuDecodeFixedWidthSplitValues(s, sb, start, end, t); } }; @@ -274,12 +318,14 @@ static __device__ int gpuUpdateValidityAndRowIndicesNested( int const batch_size = min(max_batch_size, capped_target_value_count - value_count); // definition level - int d = 1; - if (t >= batch_size) { - d = -1; - } else if (def) { - d = static_cast(def[rolling_index(value_count + t)]); - } + int const d = [&]() { + if (t >= batch_size) { + return -1; + } else if (def) { + return static_cast(def[rolling_index(value_count + t)]); + } + return 1; + }(); int const thread_value_count = t; int const block_value_count = batch_size; @@ -340,6 +386,7 @@ static __device__ int gpuUpdateValidityAndRowIndicesNested( if (is_valid) { int const dst_pos = value_count + thread_value_count; int const src_pos = max_depth_valid_count + thread_valid_count; + sb->nz_idx[rolling_index(src_pos)] = dst_pos; } // update stuff @@ -396,16 +443,16 @@ static __device__ int gpuUpdateValidityAndRowIndicesFlat( int const in_row_bounds = (row_index >= row_index_lower_bound) && (row_index < last_row); // use definition level & row bounds to determine if is valid - int is_valid; - if (t >= batch_size) { - is_valid = 0; - } else if (def) { - int const def_level = - static_cast(def[rolling_index(value_count + t)]); - is_valid = ((def_level > 0) && in_row_bounds) ? 1 : 0; - } else { - is_valid = in_row_bounds; - } + int const is_valid = [&]() { + if (t >= batch_size) { + return 0; + } else if (def) { + int const def_level = + static_cast(def[rolling_index(value_count + t)]); + return ((def_level > 0) && in_row_bounds) ? 1 : 0; + } + return in_row_bounds; + }(); // thread and block validity count using block_scan = cub::BlockScan; @@ -447,8 +494,9 @@ static __device__ int gpuUpdateValidityAndRowIndicesFlat( // output offset if (is_valid) { - int const dst_pos = value_count + thread_value_count; - int const src_pos = valid_count + thread_valid_count; + int const dst_pos = value_count + thread_value_count; + int const src_pos = valid_count + thread_valid_count; + sb->nz_idx[rolling_index(src_pos)] = dst_pos; } @@ -460,7 +508,7 @@ static __device__ int gpuUpdateValidityAndRowIndicesFlat( if (t == 0) { // update valid value count for decoding and total # of values we've processed ni.valid_count = valid_count; - ni.value_count = value_count; // TODO: remove? this is unused in the non-list path + ni.value_count = value_count; s->nz_count = valid_count; s->input_value_count = value_count; s->input_row_count = value_count; @@ -533,6 +581,239 @@ static __device__ int gpuUpdateValidityAndRowIndicesNonNullable(int32_t target_v return valid_count; } +template +static __device__ int gpuUpdateValidityAndRowIndicesLists(int32_t target_value_count, + page_state_s* s, + state_buf* sb, + level_t const* const def, + level_t const* const rep, + int t) +{ + constexpr int num_warps = decode_block_size / cudf::detail::warp_size; + constexpr int max_batch_size = num_warps * cudf::detail::warp_size; + + // how many (input) values we've processed in the page so far, prior to this loop iteration + int value_count = s->input_value_count; + + // how many rows we've processed in the page so far + int input_row_count = s->input_row_count; + + // cap by last row so that we don't process any rows past what we want to output. + int const first_row = s->first_row; + int const last_row = first_row + s->num_rows; + + int const row_index_lower_bound = s->row_index_lower_bound; + int const max_depth = s->col.max_nesting_depth - 1; + int max_depth_valid_count = s->nesting_info[max_depth].valid_count; + + int const warp_index = t / cudf::detail::warp_size; + int const warp_lane = t % cudf::detail::warp_size; + bool const is_first_lane = (warp_lane == 0); + + __syncthreads(); + __shared__ block_scan_temp_storage temp_storage; + + while (value_count < target_value_count) { + bool const within_batch = value_count + t < target_value_count; + + // get definition level, use repetition level to get start/end depth + // different for each thread, as each thread has a different r/d + auto const [def_level, start_depth, end_depth] = [&]() { + if (!within_batch) { return cuda::std::make_tuple(-1, -1, -1); } + + int const level_index = rolling_index(value_count + t); + int const rep_level = static_cast(rep[level_index]); + int const start_depth = s->nesting_info[rep_level].start_depth; + + if constexpr (!nullable) { + return cuda::std::make_tuple(-1, start_depth, max_depth); + } else { + if (def != nullptr) { + int const def_level = static_cast(def[level_index]); + return cuda::std::make_tuple( + def_level, start_depth, s->nesting_info[def_level].end_depth); + } else { + return cuda::std::make_tuple(1, start_depth, max_depth); + } + } + }(); + + // Determine value count & row index + // track (page-relative) row index for the thread so we can compare against input bounds + // keep track of overall # of rows we've read. + int const is_new_row = start_depth == 0 ? 1 : 0; + int num_prior_new_rows, total_num_new_rows; + { + block_scan_results new_row_scan_results; + scan_block_exclusive_sum(is_new_row, new_row_scan_results, temp_storage); + __syncthreads(); + num_prior_new_rows = new_row_scan_results.thread_count_within_block; + total_num_new_rows = new_row_scan_results.block_count; + } + + int const row_index = input_row_count + ((num_prior_new_rows + is_new_row) - 1); + input_row_count += total_num_new_rows; + int const in_row_bounds = (row_index >= row_index_lower_bound) && (row_index < last_row); + + // VALUE COUNT: + // in_nesting_bounds: if at a nesting level where we need to add value indices + // the bounds: from current rep to the rep AT the def depth + int in_nesting_bounds = ((0 >= start_depth && 0 <= end_depth) && in_row_bounds) ? 1 : 0; + int thread_value_count_within_warp, warp_value_count, thread_value_count, block_value_count; + { + block_scan_results value_count_scan_results; + scan_block_exclusive_sum( + in_nesting_bounds, value_count_scan_results, temp_storage); + __syncthreads(); + + thread_value_count_within_warp = value_count_scan_results.thread_count_within_warp; + warp_value_count = value_count_scan_results.warp_count; + thread_value_count = value_count_scan_results.thread_count_within_block; + block_value_count = value_count_scan_results.block_count; + } + + // iterate by depth + for (int d_idx = 0; d_idx <= max_depth; d_idx++) { + auto& ni = s->nesting_info[d_idx]; + + // everything up to the max_def_level is a non-null value + int const is_valid = [&](int input_def_level) { + if constexpr (nullable) { + return ((input_def_level >= ni.max_def_level) && in_nesting_bounds) ? 1 : 0; + } else { + return in_nesting_bounds; + } + }(def_level); + + // VALID COUNT: + // Not all values visited by this block will represent a value at this nesting level. + // the validity bit for thread t might actually represent output value t-6. + // the correct position for thread t's bit is thread_value_count. + uint32_t const warp_valid_mask = + WarpReduceOr32((uint32_t)is_valid << thread_value_count_within_warp); + int thread_valid_count, block_valid_count; + { + auto thread_mask = (uint32_t(1) << thread_value_count_within_warp) - 1; + + block_scan_results valid_count_scan_results; + scan_block_exclusive_sum(warp_valid_mask, + warp_lane, + warp_index, + thread_mask, + valid_count_scan_results, + temp_storage); + __syncthreads(); + thread_valid_count = valid_count_scan_results.thread_count_within_block; + block_valid_count = valid_count_scan_results.block_count; + } + + // compute warp and thread value counts for the -next- nesting level. we need to + // do this for lists so that we can emit an offset for the -current- nesting level. + // the offset for the current nesting level == current length of the next nesting level + int next_thread_value_count_within_warp = 0, next_warp_value_count = 0; + int next_thread_value_count = 0, next_block_value_count = 0; + int next_in_nesting_bounds = 0; + if (d_idx < max_depth) { + // NEXT DEPTH VALUE COUNT: + next_in_nesting_bounds = + ((d_idx + 1 >= start_depth) && (d_idx + 1 <= end_depth) && in_row_bounds) ? 1 : 0; + { + block_scan_results next_value_count_scan_results; + scan_block_exclusive_sum( + next_in_nesting_bounds, next_value_count_scan_results, temp_storage); + __syncthreads(); + + next_thread_value_count_within_warp = + next_value_count_scan_results.thread_count_within_warp; + next_warp_value_count = next_value_count_scan_results.warp_count; + next_thread_value_count = next_value_count_scan_results.thread_count_within_block; + next_block_value_count = next_value_count_scan_results.block_count; + } + + // STORE OFFSET TO THE LIST LOCATION + // if we're -not- at a leaf column and we're within nesting/row bounds + // and we have a valid data_out pointer, it implies this is a list column, so + // emit an offset. + if (in_nesting_bounds && ni.data_out != nullptr) { + const auto& next_ni = s->nesting_info[d_idx + 1]; + int const idx = ni.value_count + thread_value_count; + cudf::size_type const ofs = + next_ni.value_count + next_thread_value_count + next_ni.page_start_value; + + (reinterpret_cast(ni.data_out))[idx] = ofs; + } + } + + // validity is processed per-warp (on lane 0's) + // thi is because when atomic writes are needed, they are 32-bit operations + // + // lists always read and write to the same bounds + // (that is, read and write positions are already pre-bounded by first_row/num_rows). + // since we are about to write the validity vector + // here we need to adjust our computed mask to take into account the write row bounds. + if constexpr (nullable) { + if (is_first_lane && (ni.valid_map != nullptr) && (warp_value_count > 0)) { + // absolute bit offset into the output validity map + // is cumulative sum of warp_value_count at the given nesting depth + // DON'T subtract by first_row: since it's lists it's not 1-row-per-value + int const bit_offset = ni.valid_map_offset + thread_value_count; + + store_validity(bit_offset, ni.valid_map, warp_valid_mask, warp_value_count); + } + + if (t == 0) { ni.null_count += block_value_count - block_valid_count; } + } + + // if this is valid and we're at the leaf, output dst_pos + // Read value_count before the sync, so that when thread 0 modifies it we've already read its + // value + int const current_value_count = ni.value_count; + __syncthreads(); // guard against modification of ni.value_count below + if (d_idx == max_depth) { + if (is_valid) { + int const dst_pos = current_value_count + thread_value_count; + int const src_pos = max_depth_valid_count + thread_valid_count; + int const output_index = rolling_index(src_pos); + + // Index from rolling buffer of values (which doesn't include nulls) to final array (which + // includes gaps for nulls) + sb->nz_idx[output_index] = dst_pos; + } + max_depth_valid_count += block_valid_count; + } + + // update stuff + if (t == 0) { + ni.value_count += block_value_count; + ni.valid_map_offset += block_value_count; + } + __syncthreads(); // sync modification of ni.value_count + + // propagate value counts for the next depth level + block_value_count = next_block_value_count; + thread_value_count = next_thread_value_count; + in_nesting_bounds = next_in_nesting_bounds; + warp_value_count = next_warp_value_count; + thread_value_count_within_warp = next_thread_value_count_within_warp; + } // END OF DEPTH LOOP + + int const batch_size = min(max_batch_size, target_value_count - value_count); + value_count += batch_size; + } + + if (t == 0) { + // update valid value count for decoding and total # of values we've processed + s->nesting_info[max_depth].valid_count = max_depth_valid_count; + s->nz_count = max_depth_valid_count; + s->input_value_count = value_count; + + // If we have lists # rows != # values + s->input_row_count = input_row_count; + } + + return max_depth_valid_count; +} + // is the page marked nullable or not __device__ inline bool is_nullable(page_state_s* s) { @@ -560,6 +841,23 @@ __device__ inline bool maybe_has_nulls(page_state_s* s) return run_val != s->col.max_level[lvl]; } +template +__device__ int skip_decode(stream_type& parquet_stream, int num_to_skip, int t) +{ + // it could be that (e.g.) we skip 5000 but starting at row 4000 we have a run of length 2000: + // in that case skip_decode() only skips 4000, and we have to process the remaining 1000 up front + // modulo 2 * block_size of course, since that's as many as we process at once + int num_skipped = parquet_stream.skip_decode(t, num_to_skip); + while (num_skipped < num_to_skip) { + // TODO: Instead of decoding, skip within the run to the appropriate location + auto const to_decode = min(rolling_buf_size, num_to_skip - num_skipped); + num_skipped += parquet_stream.decode_next(t, to_decode); + __syncthreads(); + } + + return num_skipped; +} + /** * @brief Kernel for computing fixed width non dictionary column data stored in the pages * @@ -579,9 +877,10 @@ template + bool has_lists_t, + template typename DecodeValuesFunc> -CUDF_KERNEL void __launch_bounds__(decode_block_size_t) +CUDF_KERNEL void __launch_bounds__(decode_block_size_t, 8) gpuDecodePageDataGeneric(PageInfo* pages, device_span chunks, size_t min_row, @@ -621,31 +920,29 @@ CUDF_KERNEL void __launch_bounds__(decode_block_size_t) // if we have no work to do (eg, in a skip_rows/num_rows case) in this page. if (s->num_rows == 0) { return; } - DecodeValuesFunc decode_values; + DecodeValuesFunc decode_values; - bool const nullable = is_nullable(s); - bool const should_process_nulls = nullable && maybe_has_nulls(s); + bool const should_process_nulls = is_nullable(s) && maybe_has_nulls(s); // shared buffer. all shared memory is suballocated out of here - // constexpr int shared_rep_size = has_lists_t ? cudf::util::round_up_unsafe(rle_run_buffer_size * - // sizeof(rle_run), size_t{16}) : 0; + constexpr int shared_rep_size = + has_lists_t + ? cudf::util::round_up_unsafe(rle_run_buffer_size * sizeof(rle_run), size_t{16}) + : 0; constexpr int shared_dict_size = has_dict_t ? cudf::util::round_up_unsafe(rle_run_buffer_size * sizeof(rle_run), size_t{16}) : 0; constexpr int shared_def_size = cudf::util::round_up_unsafe(rle_run_buffer_size * sizeof(rle_run), size_t{16}); - constexpr int shared_buf_size = /*shared_rep_size +*/ shared_dict_size + shared_def_size; + constexpr int shared_buf_size = shared_rep_size + shared_dict_size + shared_def_size; __shared__ __align__(16) uint8_t shared_buf[shared_buf_size]; // setup all shared memory buffers - int shared_offset = 0; - /* - rle_run *rep_runs = reinterpret_cast*>(shared_buf + shared_offset); - if constexpr (has_lists_t){ - shared_offset += shared_rep_size; - } - */ + int shared_offset = 0; + rle_run* rep_runs = reinterpret_cast*>(shared_buf + shared_offset); + if constexpr (has_lists_t) { shared_offset += shared_rep_size; } + rle_run* dict_runs = reinterpret_cast*>(shared_buf + shared_offset); if constexpr (has_dict_t) { shared_offset += shared_dict_size; } rle_run* def_runs = reinterpret_cast*>(shared_buf + shared_offset); @@ -660,38 +957,51 @@ CUDF_KERNEL void __launch_bounds__(decode_block_size_t) def, s->page.num_input_values); } - /* + rle_stream rep_decoder{rep_runs}; level_t* const rep = reinterpret_cast(pp->lvl_decode_buf[level_type::REPETITION]); - if constexpr(has_lists_t){ + if constexpr (has_lists_t) { rep_decoder.init(s->col.level_bits[level_type::REPETITION], s->abs_lvl_start[level_type::REPETITION], s->abs_lvl_end[level_type::REPETITION], rep, s->page.num_input_values); } - */ rle_stream dict_stream{dict_runs}; if constexpr (has_dict_t) { dict_stream.init( s->dict_bits, s->data_start, s->data_end, sb->dict_idx, s->page.num_input_values); } - __syncthreads(); // We use two counters in the loop below: processed_count and valid_count. - // - processed_count: number of rows out of num_input_values that we have decoded so far. + // - processed_count: number of values out of num_input_values that we have decoded so far. // the definition stream returns the number of total rows it has processed in each call // to decode_next and we accumulate in process_count. - // - valid_count: number of non-null rows we have decoded so far. In each iteration of the + // - valid_count: number of non-null values we have decoded so far. In each iteration of the // loop below, we look at the number of valid items (which could be all for non-nullable), // and valid_count is that running count. int processed_count = 0; int valid_count = 0; + + // Skip ahead in the decoding so that we don't repeat work (skipped_leaf_values = 0 for non-lists) + if constexpr (has_lists_t) { + auto const skipped_leaf_values = s->page.skipped_leaf_values; + if (skipped_leaf_values > 0) { + if (should_process_nulls) { + skip_decode(def_decoder, skipped_leaf_values, t); + } + processed_count = skip_decode(rep_decoder, skipped_leaf_values, t); + if constexpr (has_dict_t) { + skip_decode(dict_stream, skipped_leaf_values, t); + } + } + } + // the core loop. decode batches of level stream data using rle_stream objects // and pass the results to gpuDecodeValues // For chunked reads we may not process all of the rows on the page; if not stop early - int last_row = s->first_row + s->num_rows; + int const last_row = s->first_row + s->num_rows; while ((s->error == 0) && (processed_count < s->page.num_input_values) && (s->input_row_count <= last_row)) { int next_valid_count; @@ -701,7 +1011,12 @@ CUDF_KERNEL void __launch_bounds__(decode_block_size_t) processed_count += def_decoder.decode_next(t); __syncthreads(); - if constexpr (has_nesting_t) { + if constexpr (has_lists_t) { + rep_decoder.decode_next(t); + __syncthreads(); + next_valid_count = gpuUpdateValidityAndRowIndicesLists( + processed_count, s, sb, def, rep, t); + } else if constexpr (has_nesting_t) { next_valid_count = gpuUpdateValidityAndRowIndicesNested( processed_count, s, sb, def, t); } else { @@ -713,9 +1028,16 @@ CUDF_KERNEL void __launch_bounds__(decode_block_size_t) // this function call entirely since all it will ever generate is a mapping of (i -> i) for // nz_idx. gpuDecodeFixedWidthValues would be the only work that happens. else { - processed_count += min(rolling_buf_size, s->page.num_input_values - processed_count); - next_valid_count = - gpuUpdateValidityAndRowIndicesNonNullable(processed_count, s, sb, t); + if constexpr (has_lists_t) { + processed_count += rep_decoder.decode_next(t); + __syncthreads(); + next_valid_count = gpuUpdateValidityAndRowIndicesLists( + processed_count, s, sb, nullptr, rep, t); + } else { + processed_count += min(rolling_buf_size, s->page.num_input_values - processed_count); + next_valid_count = + gpuUpdateValidityAndRowIndicesNonNullable(processed_count, s, sb, t); + } } __syncthreads(); @@ -745,6 +1067,7 @@ void __host__ DecodePageDataFixed(cudf::detail::hostdevice_span pages, size_t min_row, int level_type_size, bool has_nesting, + bool is_list, kernel_error::pointer error_code, rmm::cuda_stream_view stream) { @@ -754,12 +1077,23 @@ void __host__ DecodePageDataFixed(cudf::detail::hostdevice_span pages, dim3 dim_grid(pages.size(), 1); // 1 threadblock per page if (level_type_size == 1) { - if (has_nesting) { + if (is_list) { + gpuDecodePageDataGeneric + <<>>( + pages.device_ptr(), chunks, min_row, num_rows, error_code); + } else if (has_nesting) { gpuDecodePageDataGeneric <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); @@ -769,17 +1103,29 @@ void __host__ DecodePageDataFixed(cudf::detail::hostdevice_span pages, decode_kernel_mask::FIXED_WIDTH_NO_DICT, false, false, + false, decode_fixed_width_values_func> <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); } } else { - if (has_nesting) { + if (is_list) { + gpuDecodePageDataGeneric + <<>>( + pages.device_ptr(), chunks, min_row, num_rows, error_code); + } else if (has_nesting) { gpuDecodePageDataGeneric <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); @@ -789,6 +1135,7 @@ void __host__ DecodePageDataFixed(cudf::detail::hostdevice_span pages, decode_kernel_mask::FIXED_WIDTH_NO_DICT, false, false, + false, decode_fixed_width_values_func> <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); @@ -802,6 +1149,7 @@ void __host__ DecodePageDataFixedDict(cudf::detail::hostdevice_span pa size_t min_row, int level_type_size, bool has_nesting, + bool is_list, kernel_error::pointer error_code, rmm::cuda_stream_view stream) { @@ -811,12 +1159,23 @@ void __host__ DecodePageDataFixedDict(cudf::detail::hostdevice_span pa dim3 dim_grid(pages.size(), 1); // 1 thread block per page => # blocks if (level_type_size == 1) { - if (has_nesting) { + if (is_list) { + gpuDecodePageDataGeneric + <<>>( + pages.device_ptr(), chunks, min_row, num_rows, error_code); + } else if (has_nesting) { gpuDecodePageDataGeneric <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); @@ -826,17 +1185,29 @@ void __host__ DecodePageDataFixedDict(cudf::detail::hostdevice_span pa decode_kernel_mask::FIXED_WIDTH_DICT, true, false, + false, decode_fixed_width_values_func> <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); } } else { - if (has_nesting) { + if (is_list) { + gpuDecodePageDataGeneric + <<>>( + pages.device_ptr(), chunks, min_row, num_rows, error_code); + } else if (has_nesting) { gpuDecodePageDataGeneric <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); @@ -846,6 +1217,7 @@ void __host__ DecodePageDataFixedDict(cudf::detail::hostdevice_span pa decode_kernel_mask::FIXED_WIDTH_DICT, true, false, + true, decode_fixed_width_values_func> <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); @@ -860,6 +1232,7 @@ DecodeSplitPageFixedWidthData(cudf::detail::hostdevice_span pages, size_t min_row, int level_type_size, bool has_nesting, + bool is_list, kernel_error::pointer error_code, rmm::cuda_stream_view stream) { @@ -869,12 +1242,23 @@ DecodeSplitPageFixedWidthData(cudf::detail::hostdevice_span pages, dim3 dim_grid(pages.size(), 1); // 1 thread block per page => # blocks if (level_type_size == 1) { - if (has_nesting) { + if (is_list) { + gpuDecodePageDataGeneric + <<>>( + pages.device_ptr(), chunks, min_row, num_rows, error_code); + } else if (has_nesting) { gpuDecodePageDataGeneric <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); @@ -884,17 +1268,29 @@ DecodeSplitPageFixedWidthData(cudf::detail::hostdevice_span pages, decode_kernel_mask::BYTE_STREAM_SPLIT_FIXED_WIDTH_FLAT, false, false, + false, decode_fixed_width_split_values_func> <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); } } else { - if (has_nesting) { + if (is_list) { + gpuDecodePageDataGeneric + <<>>( + pages.device_ptr(), chunks, min_row, num_rows, error_code); + } else if (has_nesting) { gpuDecodePageDataGeneric <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); @@ -904,6 +1300,7 @@ DecodeSplitPageFixedWidthData(cudf::detail::hostdevice_span pages, decode_kernel_mask::BYTE_STREAM_SPLIT_FIXED_WIDTH_FLAT, false, false, + false, decode_fixed_width_split_values_func> <<>>( pages.device_ptr(), chunks, min_row, num_rows, error_code); diff --git a/cpp/src/io/parquet/page_hdr.cu b/cpp/src/io/parquet/page_hdr.cu index d604642be54..52d53cb8225 100644 --- a/cpp/src/io/parquet/page_hdr.cu +++ b/cpp/src/io/parquet/page_hdr.cu @@ -183,17 +183,20 @@ __device__ decode_kernel_mask kernel_mask_for_page(PageInfo const& page, return decode_kernel_mask::STRING; } - if (!is_list(chunk) && !is_byte_array(chunk) && !is_boolean(chunk)) { + if (!is_byte_array(chunk) && !is_boolean(chunk)) { if (page.encoding == Encoding::PLAIN) { - return is_nested(chunk) ? decode_kernel_mask::FIXED_WIDTH_NO_DICT_NESTED - : decode_kernel_mask::FIXED_WIDTH_NO_DICT; + return is_list(chunk) ? decode_kernel_mask::FIXED_WIDTH_NO_DICT_LIST + : is_nested(chunk) ? decode_kernel_mask::FIXED_WIDTH_NO_DICT_NESTED + : decode_kernel_mask::FIXED_WIDTH_NO_DICT; } else if (page.encoding == Encoding::PLAIN_DICTIONARY || page.encoding == Encoding::RLE_DICTIONARY) { - return is_nested(chunk) ? decode_kernel_mask::FIXED_WIDTH_DICT_NESTED - : decode_kernel_mask::FIXED_WIDTH_DICT; + return is_list(chunk) ? decode_kernel_mask::FIXED_WIDTH_DICT_LIST + : is_nested(chunk) ? decode_kernel_mask::FIXED_WIDTH_DICT_NESTED + : decode_kernel_mask::FIXED_WIDTH_DICT; } else if (page.encoding == Encoding::BYTE_STREAM_SPLIT) { - return is_nested(chunk) ? decode_kernel_mask::BYTE_STREAM_SPLIT_FIXED_WIDTH_NESTED - : decode_kernel_mask::BYTE_STREAM_SPLIT_FIXED_WIDTH_FLAT; + return is_list(chunk) ? decode_kernel_mask::BYTE_STREAM_SPLIT_FIXED_WIDTH_LIST + : is_nested(chunk) ? decode_kernel_mask::BYTE_STREAM_SPLIT_FIXED_WIDTH_NESTED + : decode_kernel_mask::BYTE_STREAM_SPLIT_FIXED_WIDTH_FLAT; } } diff --git a/cpp/src/io/parquet/parquet_gpu.hpp b/cpp/src/io/parquet/parquet_gpu.hpp index be502b581af..dba24b553e6 100644 --- a/cpp/src/io/parquet/parquet_gpu.hpp +++ b/cpp/src/io/parquet/parquet_gpu.hpp @@ -220,6 +220,10 @@ enum class decode_kernel_mask { (1 << 9), // Same as above but for nested, fixed-width data FIXED_WIDTH_NO_DICT_NESTED = (1 << 10), // Run decode kernel for fixed width non-dictionary pages FIXED_WIDTH_DICT_NESTED = (1 << 11), // Run decode kernel for fixed width dictionary pages + FIXED_WIDTH_DICT_LIST = (1 << 12), // Run decode kernel for fixed width dictionary pages + FIXED_WIDTH_NO_DICT_LIST = (1 << 13), // Run decode kernel for fixed width non-dictionary pages + BYTE_STREAM_SPLIT_FIXED_WIDTH_LIST = + (1 << 14), // Run decode kernel for BYTE_STREAM_SPLIT encoded data for fixed width lists }; // mask representing all the ways in which a string can be encoded @@ -908,6 +912,7 @@ void DecodeDeltaLengthByteArray(cudf::detail::hostdevice_span pages, * @param[in] min_row Minimum number of rows to read * @param[in] level_type_size Size in bytes of the type for level decoding * @param[in] has_nesting Whether or not the data contains nested (but not list) data. + * @param[in] is_list Whether or not the data contains list data. * @param[out] error_code Error code for kernel failures * @param[in] stream CUDA stream to use */ @@ -917,6 +922,7 @@ void DecodePageDataFixed(cudf::detail::hostdevice_span pages, size_t min_row, int level_type_size, bool has_nesting, + bool is_list, kernel_error::pointer error_code, rmm::cuda_stream_view stream); @@ -932,6 +938,7 @@ void DecodePageDataFixed(cudf::detail::hostdevice_span pages, * @param[in] min_row Minimum number of rows to read * @param[in] level_type_size Size in bytes of the type for level decoding * @param[in] has_nesting Whether or not the data contains nested (but not list) data. + * @param[in] is_list Whether or not the data contains list data. * @param[out] error_code Error code for kernel failures * @param[in] stream CUDA stream to use */ @@ -941,6 +948,7 @@ void DecodePageDataFixedDict(cudf::detail::hostdevice_span pages, size_t min_row, int level_type_size, bool has_nesting, + bool is_list, kernel_error::pointer error_code, rmm::cuda_stream_view stream); @@ -956,6 +964,7 @@ void DecodePageDataFixedDict(cudf::detail::hostdevice_span pages, * @param[in] min_row Minimum number of rows to read * @param[in] level_type_size Size in bytes of the type for level decoding * @param[in] has_nesting Whether or not the data contains nested (but not list) data. + * @param[in] is_list Whether or not the data contains list data. * @param[out] error_code Error code for kernel failures * @param[in] stream CUDA stream to use */ @@ -965,6 +974,7 @@ void DecodeSplitPageFixedWidthData(cudf::detail::hostdevice_span pages size_t min_row, int level_type_size, bool has_nesting, + bool is_list, kernel_error::pointer error_code, rmm::cuda_stream_view stream); diff --git a/cpp/src/io/parquet/reader_impl.cpp b/cpp/src/io/parquet/reader_impl.cpp index fed1a309064..689386b8957 100644 --- a/cpp/src/io/parquet/reader_impl.cpp +++ b/cpp/src/io/parquet/reader_impl.cpp @@ -272,6 +272,7 @@ void reader::impl::decode_page_data(read_mode mode, size_t skip_rows, size_t num skip_rows, level_type_size, false, + false, error_code.data(), streams[s_idx++]); } @@ -284,6 +285,20 @@ void reader::impl::decode_page_data(read_mode mode, size_t skip_rows, size_t num skip_rows, level_type_size, true, + false, + error_code.data(), + streams[s_idx++]); + } + + // launch byte stream split decoder, for list columns + if (BitAnd(kernel_mask, decode_kernel_mask::BYTE_STREAM_SPLIT_FIXED_WIDTH_LIST) != 0) { + DecodeSplitPageFixedWidthData(subpass.pages, + pass.chunks, + num_rows, + skip_rows, + level_type_size, + true, + true, error_code.data(), streams[s_idx++]); } @@ -307,6 +322,20 @@ void reader::impl::decode_page_data(read_mode mode, size_t skip_rows, size_t num skip_rows, level_type_size, false, + false, + error_code.data(), + streams[s_idx++]); + } + + // launch fixed width type decoder for lists + if (BitAnd(kernel_mask, decode_kernel_mask::FIXED_WIDTH_NO_DICT_LIST) != 0) { + DecodePageDataFixed(subpass.pages, + pass.chunks, + num_rows, + skip_rows, + level_type_size, + true, + true, error_code.data(), streams[s_idx++]); } @@ -319,6 +348,7 @@ void reader::impl::decode_page_data(read_mode mode, size_t skip_rows, size_t num skip_rows, level_type_size, true, + false, error_code.data(), streams[s_idx++]); } @@ -331,6 +361,20 @@ void reader::impl::decode_page_data(read_mode mode, size_t skip_rows, size_t num skip_rows, level_type_size, false, + false, + error_code.data(), + streams[s_idx++]); + } + + // launch fixed width type decoder with dictionaries for lists + if (BitAnd(kernel_mask, decode_kernel_mask::FIXED_WIDTH_DICT_LIST) != 0) { + DecodePageDataFixedDict(subpass.pages, + pass.chunks, + num_rows, + skip_rows, + level_type_size, + true, + true, error_code.data(), streams[s_idx++]); } @@ -343,6 +387,7 @@ void reader::impl::decode_page_data(read_mode mode, size_t skip_rows, size_t num skip_rows, level_type_size, true, + false, error_code.data(), streams[s_idx++]); } diff --git a/cpp/src/io/parquet/rle_stream.cuh b/cpp/src/io/parquet/rle_stream.cuh index 4a0791d5c54..69e783a89d0 100644 --- a/cpp/src/io/parquet/rle_stream.cuh +++ b/cpp/src/io/parquet/rle_stream.cuh @@ -19,6 +19,7 @@ #include "parquet_gpu.hpp" #include +#include namespace cudf::io::parquet::detail { @@ -216,6 +217,26 @@ struct rle_stream { decode_index = -1; // signals the first iteration. Nothing to decode. } + __device__ inline int get_rle_run_info(rle_run& run) + { + run.start = cur; + run.level_run = get_vlq32(run.start, end); + + // run_bytes includes the header size + int run_bytes = run.start - cur; + if (is_literal_run(run.level_run)) { + // from the parquet spec: literal runs always come in multiples of 8 values. + run.size = (run.level_run >> 1) * 8; + run_bytes += util::div_rounding_up_unsafe(run.size * level_bits, 8); + } else { + // repeated value run + run.size = (run.level_run >> 1); + run_bytes += util::div_rounding_up_unsafe(level_bits, 8); + } + + return run_bytes; + } + __device__ inline void fill_run_batch() { // decode_index == -1 means we are on the very first decode iteration for this stream. @@ -226,31 +247,14 @@ struct rle_stream { while (((decode_index == -1 && fill_index < num_rle_stream_decode_warps) || fill_index < decode_index + run_buffer_size) && cur < end) { - auto& run = runs[rolling_index(fill_index)]; - // Encoding::RLE + // Pass by reference to fill the runs shared memory with the run data + auto& run = runs[rolling_index(fill_index)]; + int const run_bytes = get_rle_run_info(run); - // bytes for the varint header - uint8_t const* _cur = cur; - int const level_run = get_vlq32(_cur, end); - // run_bytes includes the header size - int run_bytes = _cur - cur; - - // literal run - if (is_literal_run(level_run)) { - // from the parquet spec: literal runs always come in multiples of 8 values. - run.size = (level_run >> 1) * 8; - run_bytes += ((run.size * level_bits) + 7) >> 3; - } - // repeated value run - else { - run.size = (level_run >> 1); - run_bytes += ((level_bits) + 7) >> 3; - } - run.output_pos = output_pos; - run.start = _cur; - run.level_run = level_run; run.remaining = run.size; + run.output_pos = output_pos; + cur += run_bytes; output_pos += run.size; fill_index++; @@ -372,6 +376,39 @@ struct rle_stream { return values_processed_shared; } + __device__ inline int skip_runs(int target_count) + { + // we want to process all runs UP TO BUT NOT INCLUDING the run that overlaps with the skip + // amount so threads spin like crazy on fill_run_batch(), skipping writing unnecessary run info. + // then when it hits the one that matters, we don't process it at all and bail as if we never + // started basically we're setting up the rle_stream vars necessary to start fill_run_batch for + // the first time + while (cur < end) { + rle_run run; + int run_bytes = get_rle_run_info(run); + + if ((output_pos + run.size) > target_count) { + return output_pos; // bail! we've reached the starting run + } + + // skip this run + output_pos += run.size; + cur += run_bytes; + } + + return output_pos; // we skipped everything + } + + __device__ inline int skip_decode(int t, int count) + { + int const output_count = min(count, total_values - cur_values); + + // if level_bits == 0, there's nothing to do + // a very common case: columns with no nulls, especially if they are non-nested + cur_values = (level_bits == 0) ? output_count : skip_runs(output_count); + return cur_values; + } + __device__ inline int decode_next(int t) { return decode_next(t, max_output_values); } };