Skip to content

Commit 13f8689

Browse files
committed
consistency updates
1 parent 48c9f8f commit 13f8689

14 files changed

+441
-446
lines changed

ch13/ch13_part1.ipynb

+114-78
Large diffs are not rendered by default.

ch13/ch13_part1.py

+23-2
Original file line numberDiff line numberDiff line change
@@ -212,7 +212,7 @@
212212

213213
print(t.numpy())
214214

215-
t_splits = tf.split(t, [3, 2])
215+
t_splits = tf.split(t, num_or_size_splits=[3, 2])
216216

217217
[item.numpy() for item in t_splits]
218218

@@ -345,6 +345,17 @@
345345

346346

347347

348+
tf.random.set_seed(1)
349+
350+
## Order 1: shuffle -> batch -> repeat
351+
ds = ds_joint.shuffle(4).batch(2).repeat(3)
352+
353+
for i,(batch_x, batch_y) in enumerate(ds):
354+
print(i, batch_x.shape, batch_y.numpy())
355+
356+
357+
358+
348359
tf.random.set_seed(1)
349360

350361
## Order 1: shuffle -> batch -> repeat
@@ -356,6 +367,17 @@
356367

357368

358369

370+
tf.random.set_seed(1)
371+
372+
## Order 2: batch -> shuffle -> repeat
373+
ds = ds_joint.batch(2).shuffle(4).repeat(3)
374+
375+
for i,(batch_x, batch_y) in enumerate(ds):
376+
print(i, batch_x.shape, batch_y.numpy())
377+
378+
379+
380+
359381
tf.random.set_seed(1)
360382

361383
## Order 2: batch -> shuffle -> repeat
@@ -560,7 +582,6 @@ def load_and_preprocess(path, label):
560582
ax.imshow(image[:, :, 0], cmap='gray_r')
561583
ax.set_title('{}'.format(label), size=15)
562584

563-
#plt.savefig('ch13-mnist-new.png')
564585
plt.show()
565586

566587

ch13/ch13_part2.ipynb

+220-225
Large diffs are not rendered by default.

ch13/ch13_part2.py

+17-17
Original file line numberDiff line numberDiff line change
@@ -263,19 +263,19 @@ def train(model, inputs, outputs, learning_rate):
263263

264264

265265

266-
model = tf.keras.Sequential([
266+
iris_model = tf.keras.Sequential([
267267
tf.keras.layers.Dense(16, activation='sigmoid',
268268
name='fc1', input_shape=(4,)),
269269
tf.keras.layers.Dense(3, name='fc2', activation='softmax')])
270270

271-
model.summary()
271+
iris_model.summary()
272272

273273

274274

275275

276-
model.compile(optimizer='adam',
277-
loss='sparse_categorical_crossentropy',
278-
metrics=['accuracy'])
276+
iris_model.compile(optimizer='adam',
277+
loss='sparse_categorical_crossentropy',
278+
metrics=['accuracy'])
279279

280280

281281

@@ -291,9 +291,9 @@ def train(model, inputs, outputs, learning_rate):
291291
ds_train = ds_train.prefetch(buffer_size=1000)
292292

293293

294-
history = model.fit(ds_train, epochs=num_epochs,
295-
steps_per_epoch=steps_per_epoch,
296-
verbose=0)
294+
history = iris_model.fit(ds_train, epochs=num_epochs,
295+
steps_per_epoch=steps_per_epoch,
296+
verbose=0)
297297

298298

299299

@@ -322,30 +322,30 @@ def train(model, inputs, outputs, learning_rate):
322322

323323

324324

325-
results = model.evaluate(ds_test.batch(50), verbose=0)
325+
results = iris_model.evaluate(ds_test.batch(50), verbose=0)
326326
print('Test loss: {:.4f} Test Acc.: {:.4f}'.format(*results))
327327

328328

329329
# ### Saving and reloading the trained model
330330

331331

332332

333-
model.save('iris-classifier.h5',
334-
overwrite=True,
335-
include_optimizer=True,
336-
save_format='h5')
333+
iris_model.save('iris-classifier.h5',
334+
overwrite=True,
335+
include_optimizer=True,
336+
save_format='h5')
337337

338338

339339

340340

341-
model_new = tf.keras.models.load_model('iris-classifier.h5')
341+
iris_model_new = tf.keras.models.load_model('iris-classifier.h5')
342342

343-
model_new.summary()
343+
iris_model_new.summary()
344344

345345

346346

347347

348-
results = model_new.evaluate(ds_test.batch(50), verbose=0)
348+
results = iris_model_new.evaluate(ds_test.batch(50), verbose=0)
349349
print('Test loss: {:.4f} Test Acc.: {:.4f}'.format(*results))
350350

351351

@@ -363,7 +363,7 @@ def train(model, inputs, outputs, learning_rate):
363363

364364

365365

366-
model.to_json()
366+
iris_model_new.to_json()
367367

368368

369369
# ## Choosing activation functions for multilayer neural networks

ch14/ch14_part1.ipynb

+8-8
Original file line numberDiff line numberDiff line change
@@ -35,9 +35,9 @@
3535
"output_type": "stream",
3636
"text": [
3737
"Sebastian Raschka & Vahid Mirjalili \n",
38-
"last updated: 2019-12-04 \n",
38+
"last updated: 2019-12-06 \n",
3939
"\n",
40-
"numpy 1.17.3\n",
40+
"numpy 1.17.4\n",
4141
"scipy 1.3.1\n",
4242
"matplotlib 3.1.0\n",
4343
"tensorflow 2.0.0\n"
@@ -783,8 +783,8 @@
783783
],
784784
"source": [
785785
"model = tf.keras.Sequential()\n",
786-
"model.add(tf.keras.layers.Dense(16, activation='relu'))\n",
787-
"model.add(tf.keras.layers.Dense(32, activation='relu'))\n",
786+
"model.add(tf.keras.layers.Dense(units=16, activation='relu'))\n",
787+
"model.add(tf.keras.layers.Dense(units=32, activation='relu'))\n",
788788
"\n",
789789
"## late variable creation\n",
790790
"model.build(input_shape=(None, 4))\n",
@@ -1487,9 +1487,9 @@
14871487
"\n",
14881488
"model = tf.keras.Sequential([\n",
14891489
" NoisyLinear(4, noise_stddev=0.1),\n",
1490-
" tf.keras.layers.Dense(4, activation='relu'),\n",
1491-
" tf.keras.layers.Dense(4, activation='relu'),\n",
1492-
" tf.keras.layers.Dense(1, activation='sigmoid')])\n",
1490+
" tf.keras.layers.Dense(units=4, activation='relu'),\n",
1491+
" tf.keras.layers.Dense(units=4, activation='relu'),\n",
1492+
" tf.keras.layers.Dense(units=1, activation='sigmoid')])\n",
14931493
"\n",
14941494
"model.build(input_shape=(None, 2))\n",
14951495
"model.summary()\n",
@@ -1557,7 +1557,7 @@
15571557
"output_type": "stream",
15581558
"text": [
15591559
"[NbConvertApp] Converting notebook ch14_part1.ipynb to script\n",
1560-
"[NbConvertApp] Writing 19958 bytes to ch14_part1.py\n"
1560+
"[NbConvertApp] Writing 19996 bytes to ch14_part1.py\n"
15611561
]
15621562
}
15631563
],

ch14/ch14_part1.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -341,8 +341,8 @@ def compute_z(x):
341341

342342

343343
model = tf.keras.Sequential()
344-
model.add(tf.keras.layers.Dense(16, activation='relu'))
345-
model.add(tf.keras.layers.Dense(32, activation='relu'))
344+
model.add(tf.keras.layers.Dense(units=16, activation='relu'))
345+
model.add(tf.keras.layers.Dense(units=32, activation='relu'))
346346

347347
## late variable creation
348348
model.build(input_shape=(None, 4))
@@ -729,9 +729,9 @@ def get_config(self):
729729

730730
model = tf.keras.Sequential([
731731
NoisyLinear(4, noise_stddev=0.1),
732-
tf.keras.layers.Dense(4, activation='relu'),
733-
tf.keras.layers.Dense(4, activation='relu'),
734-
tf.keras.layers.Dense(1, activation='sigmoid')])
732+
tf.keras.layers.Dense(units=4, activation='relu'),
733+
tf.keras.layers.Dense(units=4, activation='relu'),
734+
tf.keras.layers.Dense(units=1, activation='sigmoid')])
735735

736736
model.build(input_shape=(None, 2))
737737
model.summary()

ch14/ch14_part2.ipynb

+9-57
Original file line numberDiff line numberDiff line change
@@ -1002,13 +1002,7 @@
10021002
"INFO:tensorflow:global_step/sec: 567.788\n",
10031003
"INFO:tensorflow:loss = 240.40808, step = 4800 (0.176 sec)\n",
10041004
"INFO:tensorflow:global_step/sec: 587.168\n",
1005-
"INFO:tensorflow:loss = 319.34958, step = 4900 (0.170 sec)\n"
1006-
]
1007-
},
1008-
{
1009-
"name": "stdout",
1010-
"output_type": "stream",
1011-
"text": [
1005+
"INFO:tensorflow:loss = 319.34958, step = 4900 (0.170 sec)\n",
10121006
"INFO:tensorflow:global_step/sec: 613.08\n",
10131007
"INFO:tensorflow:loss = 270.3896, step = 5000 (0.163 sec)\n",
10141008
"INFO:tensorflow:global_step/sec: 615.585\n",
@@ -1174,13 +1168,7 @@
11741168
"INFO:tensorflow:global_step/sec: 653.213\n",
11751169
"INFO:tensorflow:loss = 69.10744, step = 13100 (0.153 sec)\n",
11761170
"INFO:tensorflow:global_step/sec: 661.769\n",
1177-
"INFO:tensorflow:loss = 66.7493, step = 13200 (0.151 sec)\n"
1178-
]
1179-
},
1180-
{
1181-
"name": "stdout",
1182-
"output_type": "stream",
1183-
"text": [
1171+
"INFO:tensorflow:loss = 66.7493, step = 13200 (0.151 sec)\n",
11841172
"INFO:tensorflow:global_step/sec: 653.19\n",
11851173
"INFO:tensorflow:loss = 50.434845, step = 13300 (0.153 sec)\n",
11861174
"INFO:tensorflow:global_step/sec: 662.245\n",
@@ -1345,13 +1333,7 @@
13451333
"INFO:tensorflow:loss = 26.513557, step = 21300 (0.178 sec)\n",
13461334
"INFO:tensorflow:global_step/sec: 640.564\n",
13471335
"INFO:tensorflow:loss = 21.903809, step = 21400 (0.156 sec)\n",
1348-
"INFO:tensorflow:global_step/sec: 647.2\n"
1349-
]
1350-
},
1351-
{
1352-
"name": "stdout",
1353-
"output_type": "stream",
1354-
"text": [
1336+
"INFO:tensorflow:global_step/sec: 647.2\n",
13551337
"INFO:tensorflow:loss = 30.5953, step = 21500 (0.154 sec)\n",
13561338
"INFO:tensorflow:global_step/sec: 638.928\n",
13571339
"INFO:tensorflow:loss = 27.62001, step = 21600 (0.157 sec)\n",
@@ -1516,13 +1498,7 @@
15161498
"INFO:tensorflow:global_step/sec: 638.647\n",
15171499
"INFO:tensorflow:loss = 53.59935, step = 29600 (0.157 sec)\n",
15181500
"INFO:tensorflow:global_step/sec: 641.218\n",
1519-
"INFO:tensorflow:loss = 1.7887146, step = 29700 (0.156 sec)\n"
1520-
]
1521-
},
1522-
{
1523-
"name": "stdout",
1524-
"output_type": "stream",
1525-
"text": [
1501+
"INFO:tensorflow:loss = 1.7887146, step = 29700 (0.156 sec)\n",
15261502
"INFO:tensorflow:global_step/sec: 632.812\n",
15271503
"INFO:tensorflow:loss = 9.185707, step = 29800 (0.158 sec)\n",
15281504
"INFO:tensorflow:global_step/sec: 636.626\n",
@@ -1687,13 +1663,7 @@
16871663
"INFO:tensorflow:loss = 6.9836364, step = 37800 (0.157 sec)\n",
16881664
"INFO:tensorflow:global_step/sec: 640.438\n",
16891665
"INFO:tensorflow:loss = 3.7009566, step = 37900 (0.156 sec)\n",
1690-
"INFO:tensorflow:global_step/sec: 652.57\n"
1691-
]
1692-
},
1693-
{
1694-
"name": "stdout",
1695-
"output_type": "stream",
1696-
"text": [
1666+
"INFO:tensorflow:global_step/sec: 652.57\n",
16971667
"INFO:tensorflow:loss = 15.457409, step = 38000 (0.153 sec)\n",
16981668
"INFO:tensorflow:global_step/sec: 641.224\n",
16991669
"INFO:tensorflow:loss = 15.640904, step = 38100 (0.156 sec)\n",
@@ -2007,13 +1977,7 @@
20071977
"INFO:tensorflow:global_step/sec: 388.812\n",
20081978
"INFO:tensorflow:loss = 0.2290253, step = 4380 (0.273 sec)\n",
20091979
"INFO:tensorflow:global_step/sec: 373.834\n",
2010-
"INFO:tensorflow:loss = 0.24748756, step = 4480 (0.270 sec)\n"
2011-
]
2012-
},
2013-
{
2014-
"name": "stdout",
2015-
"output_type": "stream",
2016-
"text": [
1980+
"INFO:tensorflow:loss = 0.24748756, step = 4480 (0.270 sec)\n",
20171981
"INFO:tensorflow:global_step/sec: 373.023\n",
20181982
"INFO:tensorflow:loss = 0.2879139, step = 4580 (0.275 sec)\n",
20191983
"INFO:tensorflow:global_step/sec: 364.77\n",
@@ -2177,13 +2141,7 @@
21772141
"INFO:tensorflow:global_step/sec: 303.166\n",
21782142
"INFO:tensorflow:loss = 0.018593434, step = 12580 (0.310 sec)\n",
21792143
"INFO:tensorflow:global_step/sec: 307.677\n",
2180-
"INFO:tensorflow:loss = 0.009453268, step = 12680 (0.318 sec)\n"
2181-
]
2182-
},
2183-
{
2184-
"name": "stdout",
2185-
"output_type": "stream",
2186-
"text": [
2144+
"INFO:tensorflow:loss = 0.009453268, step = 12680 (0.318 sec)\n",
21872145
"INFO:tensorflow:global_step/sec: 323.497\n",
21882146
"INFO:tensorflow:loss = 0.0074377223, step = 12780 (0.317 sec)\n",
21892147
"INFO:tensorflow:global_step/sec: 318.278\n",
@@ -2343,13 +2301,7 @@
23432301
"INFO:tensorflow:global_step/sec: 280.449\n",
23442302
"INFO:tensorflow:loss = 0.0008953349, step = 20580 (0.364 sec)\n",
23452303
"INFO:tensorflow:global_step/sec: 278.265\n",
2346-
"INFO:tensorflow:loss = 0.0015090622, step = 20680 (0.371 sec)\n"
2347-
]
2348-
},
2349-
{
2350-
"name": "stdout",
2351-
"output_type": "stream",
2352-
"text": [
2304+
"INFO:tensorflow:loss = 0.0015090622, step = 20680 (0.371 sec)\n",
23532305
"INFO:tensorflow:global_step/sec: 270.082\n",
23542306
"INFO:tensorflow:loss = 0.0010438098, step = 20780 (0.374 sec)\n",
23552307
"INFO:tensorflow:global_step/sec: 267.97\n",
@@ -2501,7 +2453,7 @@
25012453
"name": "python",
25022454
"nbconvert_exporter": "python",
25032455
"pygments_lexer": "ipython3",
2504-
"version": "3.7.4"
2456+
"version": "3.7.1"
25052457
}
25062458
},
25072459
"nbformat": 4,

0 commit comments

Comments
 (0)