-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdatabase_pos.py
82 lines (71 loc) · 2.61 KB
/
database_pos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import stopword_removal_stemming
import nltk
import re
import preprocessing
import slang_removal
import tfidf
from nltk import tag
import json
def processing(data, username):
data = preprocessing.remove_links(data)
data = preprocessing.remove_username("@"+ username, data)
data = preprocessing.remove(":", data)
data = preprocessing.remove("\n", data)
data = preprocessing.remove("RT", data)
emoji_pattern = re.compile("["u"\U0001F600-\U0001F64F""]+", flags=re.UNICODE)
data = preprocessing.remove_emoji(emoji_pattern,data)
emoji_pattern = re.compile("["u"\U0001F300-\U0001F5FF""]+", flags=re.UNICODE)
data = preprocessing.remove_emoji(emoji_pattern,data)
return data
def pos_tag():
test_data = []
test_data_list = {"user": [], "data": []}
for x in range(1, 100):
stre = str(x)
test_data = stopword_removal_stemming.read_tweets("tw_db/t" + stre + ".txt")
if "\n" in test_data[0]:
user = test_data[0].replace("\n", "")
test_data_list["user"].append(user)
test_data = processing(test_data,test_data[0])
test_data = stopword_removal_stemming.tag_pos(test_data)
test_data = slang_removal.slang_removal(test_data,slang_removal.Replace, slang_removal.Dismiss)
test_data = stopword_removal_stemming.stemming_stop_removal(nltk.PorterStemmer(), test_data)
test_data_list["data"].append(test_data)
test_data = []
return test_data_list
pos_data = pos_tag()
def return_keywords(data):
final_keywords_list = []
keywords_list = []
keywords = []
for row in data:
for tweet in row:
if len(tweet) != 0:
for (word, tag) in tweet:
if tag == "NN" or tag == "NNP" or tag == "NNS":
if word != "@" or word != "✨" or word != "❤" or word != "":
keywords.append(word)
keywords_list.append(keywords)
keywords = []
final_keywords_list.append(keywords_list)
keywords_list = []
return final_keywords_list
keywords = return_keywords(pos_data["data"])
#
# def write_to_file(file, data):
# f = open(file, "w")
# for row in data:
# for tweet in row:
# for word in tweet:
# f.write(word)
# f.write(",")
# f.write("\n")
# f.write("\n")
#
# write_to_file("keywords.txt", keywords)
user_keywords = {}
user = pos_data["user"]
for i in range(0,len(user)):
user_keywords.update(tfidf.tfidf_rank_user(keywords[i],99,user[i]))
with open('database.json', 'w') as fp:
json.dump(user_keywords, fp)