-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
41 lines (34 loc) · 1 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import matplotlib.pyplot as plt
# Model names
models = [
"gpt-4o-mini [zero shot]",
"gpt-4o-mini",
"gpt-4o-mini (self correct)",
"gpt-4o-mini-ft",
"gpt-4o-mini-ft (self correct)",
"gpt-4o-mini-ft2 (4o teacher)",
"gpt-4o [zero shot]",
"gpt-4o",
"gpt-4o (self correct)",
"gpt-4o-ft",
"gpt-4o-ft (self correct)",
"babbage-002",
"davinci-002",
"davinci-002-ft"
]
# Accuracies for each model
accuracies = [17.4, 25.99, 31.72, 57.71, 65.64, 54.19, 28.44, 55.07, 63.88, 58.59, 71.37, 61.23, 74.45, 76.21]
# Create a scatter plot
plt.figure(figsize=(12, 6))
plt.scatter(models, accuracies) # Use scatter instead of bar
# Add labels and title
plt.xlabel("model")
plt.ylabel("accuracy (%)")
plt.title("llm pgn chess puzzle solving")
# Rotate x-axis labels for better readability
plt.xticks(rotation=45, ha="right")
# Tight layout to prevent overlapping elements
plt.tight_layout()
# You can optionally save or display the plot
plt.savefig("model_accuracy.png")
plt.show()