-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
166 lines (133 loc) · 6.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from argparse import ArgumentParser
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from tokenizer import CharTokenizer
from data import CharDS, LanguageModelingDataCollator
from model import MiniCharGPTLM
import time
import json
import os
def init_args():
parser = ArgumentParser()
# data
parser.add_argument("--train_data", type=str, help="Train data file path", required=True)
parser.add_argument("--test_data", type=str, help="Test data file path", required=True)
# model
parser.add_argument("--seq_len", type=int, help="Max sequence length", default=64)
parser.add_argument("--d_model", type=int, help="Model's hidden dimension", default=768)
parser.add_argument("--ff_dim", type=int, help="Model's positional ffnn inner dimension", default=1024)
parser.add_argument("--n_head", type=int, help="Number of head in multi-head attention", default=4)
parser.add_argument("--n_block", type=int, help="Number of decoder blocks", default=4)
# train
parser.add_argument("--gpu", type=int, help="GPU ID, -1 for cpu", default=-1)
parser.add_argument("--batch", type=int, help="Training batch size", default=16)
parser.add_argument("--lr", type=float, help="SGD optimizer's learning rate", default=3e-4)
parser.add_argument("--epoch", type=int, help="Number of epoch", default=10)
# save
parser.add_argument("--ckpt", type=str, help="Model checkpoint's file path", default="model.pth")
args = parser.parse_args()
return args
def train(model, device, train_dataloader, val_dataloader, epoch, lr):
history = []
model = model.to(device)
criterion = torch.nn.CrossEntropyLoss(ignore_index=-100)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
train_bar = tqdm(total=epoch*len(train_dataloader), desc="Training")
for e in range(epoch):
train_start_time = time.time()
model.train()
train_loss = 0
for batch in train_dataloader:
labels = batch.pop("labels").to(device)
input_ids = batch.pop("input_ids").to(device)
attention_mask = batch.pop("attention_mask").to(device)
optimizer.zero_grad()
out = model.forward(input_ids=input_ids, attention_mask=attention_mask)
loss = criterion(out.view(-1, out.shape[-1]), labels.view(-1))
train_loss += loss.item() * out.shape[0]
loss.backward()
optimizer.step()
train_bar.update()
train_loss /= len(train_dataloader.dataset)
train_end_time = time.time()
val_start_time = time.time()
model.eval()
val_bar = tqdm(total=len(val_dataloader), desc="Evaluation")
with torch.no_grad():
val_loss = 0
for batch in val_dataloader:
labels = batch.pop("labels").to(device)
input_ids = batch.pop("input_ids").to(device)
attention_mask = batch.pop("attention_mask").to(device)
out = model.forward(input_ids=input_ids, attention_mask=attention_mask)
loss = criterion(out.view(-1, out.shape[-1]), labels.view(-1))
val_loss += loss.item() * out.shape[0]
val_bar.update()
val_loss /= len(val_dataloader.dataset)
val_end_time = time.time()
train_time = train_end_time - train_start_time
val_time = val_end_time - val_start_time
print(f"Epoch {e+1} | Train Loss {train_loss} | Val Loss {val_loss} | Train Time {train_time:.2f} | Val Time {val_time:.2f}")
history.append({
"epoch" : e + 1,
"train_loss" : train_loss,
"val_loss" : val_loss,
"train_time" : train_time,
"val_time" : val_time,
"train_data" : len(train_dataloader.dataset),
"val_data" : len(val_dataloader.dataset),
"train_step" : len(train_dataloader),
"val_step" : len(val_dataloader)
})
return model, history
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def main():
args = init_args()
# prepare dataset
print(f"Prepare dataset from {args.train_data} and {args.test_data}...")
tokenizer = CharTokenizer()
train_ds = CharDS.load_data(args.train_data,
tokenizer,
dict(truncate=True, padding=True, max_length=args.seq_len))
test_ds = CharDS.load_data(args.test_data,
tokenizer,
dict(truncate=True, padding=True, max_length=args.seq_len))
collator = LanguageModelingDataCollator(tokenizer=tokenizer)
train_dataloader = DataLoader(train_ds, batch_size=args.batch, shuffle=True, collate_fn=collator)
test_dataloader = DataLoader(test_ds, batch_size=args.batch, shuffle=True, collate_fn=collator)
# prepare model
print("Preparing model...")
model = MiniCharGPTLM(h_dim=args.d_model, ff_dim=args.ff_dim,
n_head=args.n_head, n_block=args.n_block,
n_token=len(tokenizer.char2id))
device = torch.device(f"cuda:{args.gpu}") if (torch.cuda.is_available() and args.gpu != -1) else torch.device("cpu")
# train
print("Start training...")
model, history = train(model, device, train_dataloader, test_dataloader, args.epoch, args.lr)
print("Done training, saving model...")
model = model.cpu()
ckpt = {
"h_dim" : args.d_model,
"ff_dim" : args.ff_dim,
"n_head" : args.n_head,
"n_block" : args.n_block,
"state_dict" : model.state_dict()
}
ckpt_dir, _ = os.path.split(args.ckpt)
os.makedirs(ckpt_dir, exist_ok=True)
torch.save(ckpt, args.ckpt)
stats = {
"h_dim" : args.d_model,
"ff_dim" : args.ff_dim,
"n_head" : args.n_head,
"n_block" : args.n_block,
"params" : count_parameters(model),
"history" : history
}
with open(os.path.join(ckpt_dir, "stats.json"), 'w') as fp:
json.dump(stats, fp)
print(f"Done saving! Can be found at {ckpt_dir}")
if __name__ == "__main__":
main()