-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_cloth_unfolding.py
1041 lines (910 loc) · 57.9 KB
/
train_cloth_unfolding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import os
import shutil
import time
import cv2
import h5py
import matplotlib.pyplot as plt
import numpy as np
import ray
import torch
from filelock import FileLock
from tqdm import trange
import utils
from utils import get_obj_mask, get_line_mask, str2bool
import wandb
from sim_env import SimEnv
from model import GraspModel, BlowModel
class GraspDataset(torch.utils.data.Dataset):
def __init__(self, replay_buffer_path):
self.replay_buffer_path = replay_buffer_path
with h5py.File(self.replay_buffer_path, 'r') as data:
self.data_len = int(np.array(data['curr_data_size']))
def __len__(self):
return self.data_len
def __getitem__(self, idx):
with h5py.File(self.replay_buffer_path, 'r') as data:
group = data[f'data-{idx}']
color_image = np.array(group['color_image']).astype(np.float32)
observation = color_image.transpose([2, 0, 1])
cover_area = np.array(group['cover_area']).astype(np.float32)
init_cover_area = np.array(group['init_cover_area']).astype(np.float32)
reward = cover_area - init_cover_area
grasp_center = np.array(group['grasp_center']).astype(int)
grasp_angle = np.array(group['grasp_angle']).astype(np.float32)
return observation, grasp_center, grasp_angle, reward
class BlowDataset(torch.utils.data.Dataset):
def __init__(self, replay_buffer_path):
self.replay_buffer_path = replay_buffer_path
with h5py.File(self.replay_buffer_path, 'r') as data:
self.data_len = int(np.array(data['curr_data_size']))
def __len__(self):
return self.data_len
def __getitem__(self, idx):
with h5py.File(self.replay_buffer_path, 'r') as data:
group = data[f'data-{idx}']
color_image = np.array(group['color_image']).astype(np.float32)
observation = color_image.transpose([2, 0, 1])
cover_area = np.array(group['cover_area']).astype(np.float32)
reward = cover_area
action = np.array(group['blow_action']).astype(np.float32)
last_action = np.array(group['last_blow_action']).astype(np.float32)
return observation, action, last_action, reward
def generate_line_masks(rotation_num, resolution):
rotation_angles = np.arange(rotation_num)*(np.pi / rotation_num)
masks = list()
for angle in rotation_angles:
img = np.zeros([resolution * 2 - 1, resolution * 2 - 1])
center = np.array([resolution - 1, resolution - 1])
direction = np.array([np.cos(angle), np.sin(angle)])
p0 = center + direction * resolution * 2
p1 = center - direction * resolution * 2
masks.append({
'angle': angle,
'direction': direction,
'mask': cv2.line(img, [int(p0[1]), int(p0[0])], [int(p1[1]), int(p1[0])], 1, 1)
})
return masks
def add_data(group, name, data, compression=False):
if name in group:
group[name][...] = data
else:
if compression:
group.create_dataset(name=name, data=data, compression='gzip', compression_opts=5)
else:
group.create_dataset(name=name, data=data)
def get_blow_actions(action_candidates, score_candidates, epsilon):
actions, scores = list(), list()
for i in range(score_candidates.shape[1]):
idx = np.argmax(score_candidates[:, i]) if np.random.rand() > epsilon else np.random.choice(score_candidates.shape[0])
actions.append(action_candidates[idx, i])
scores.append(score_candidates[idx, i])
return actions, scores
def get_grasp_action(affordance_maps, line_masks, obj_mask, args):
# affordance_maps: [N, W, H]
valid_mask = np.ones([args.grasp_resolution, args.grasp_resolution])
sorted_actions = np.stack(np.unravel_index(np.argsort(-affordance_maps, axis=None), affordance_maps.shape), axis=1)
for action in sorted_actions:
pixel = action[1:]
if valid_mask[pixel[0], pixel[1]] == 0:
continue
angle_id = action[0]
direction = line_masks[angle_id]['direction']
line_mask = get_line_mask(line_masks, pixel, angle_id, args.grasp_resolution)
mask = line_mask * obj_mask
if np.max(mask) == 0:
continue
pixel_candidates = np.stack(np.nonzero(mask), axis=1)
dist = np.sum((pixel_candidates - np.array(pixel)) * direction, axis=1)
p0 = pixel_candidates[np.argmin(dist)]
p1 = pixel_candidates[np.argmax(dist)]
if np.max(dist) < 0 or np.min(dist) > 0 or np.linalg.norm(p0 - p1) < 4:
continue
if p0[1] > p1[1]:
p0, p1 = p1, p0
d0 = np.linalg.norm(p0 - np.array([(args.grasp_resolution - 1) / 2, -args.grasp_resolution * 0.1]))
d1 = np.linalg.norm(p1 - np.array([(args.grasp_resolution - 1) / 2, args.grasp_resolution * (1+0.1)]))
if max(d0, d1) < args.grasp_resolution * 0.6:
return action
valid_mask *= (1 - line_mask)
return None
def get_flingbot_action(affordance_maps, obj_mask, args):
sorted_actions = np.stack(np.unravel_index(np.argsort(-affordance_maps, axis=None), affordance_maps.shape), axis=1)
for action in sorted_actions:
scale_id = action[0]
angle_id = action[1]
pixel = action[2:]
angle = args.grasp_angle_options[angle_id]
scale = args.grasp_scale_options[scale_id]
p0 = (pixel + np.array([np.cos(angle), np.sin(angle)]) * 8).astype(int)
p1 = (pixel - np.array([np.cos(angle), np.sin(angle)]) * 8).astype(int)
mat = utils.get_transform_matrix(obj_mask.shape[0], args.grasp_resolution, 1.0/scale)
pix0 = (np.array([p0[0], p0[1], 1]) @ mat).astype(int)[:2]
pix1 = (np.array([p1[0], p1[1], 1]) @ mat).astype(int)[:2]
if np.min(pix0) < 0 or np.max(pix0) >= obj_mask.shape[0] or np.min(pix1) < 0 or np.max(pix1) >= obj_mask.shape[0]:
continue
if obj_mask[pix0[0], pix0[1]] + obj_mask[pix1[0], pix1[1]] == 1:
continue
mat = utils.get_transform_matrix(args.grasp_resolution, args.grasp_resolution, 1.0/scale)
p0 = (np.array([p0[0], p0[1], 1]) @ mat).astype(int)[:2]
p1 = (np.array([p1[0], p1[1], 1]) @ mat).astype(int)[:2]
if p0[1] > p1[1]:
p0, p1 = p1, p0
d0 = np.linalg.norm(p0 - np.array([(args.grasp_resolution - 1) / 2, -args.grasp_resolution * 0.1]))
d1 = np.linalg.norm(p1 - np.array([(args.grasp_resolution - 1) / 2, args.grasp_resolution * (1+0.1)]))
if max(d0, d1) < args.grasp_resolution * 0.6:
return action
return action
def get_pick_and_place_action(affordance_maps, obj_mask, args):
sorted_actions = np.stack(np.unravel_index(np.argsort(-affordance_maps, axis=None), affordance_maps.shape), axis=1)
for action in sorted_actions:
scale_id = action[0]
angle_id = action[1]
pixel = action[2:]
angle = args.grasp_angle_options[angle_id]
scale = args.grasp_scale_options[scale_id]
p0 = pixel.astype(int)
p1 = (pixel + np.array([np.cos(angle), np.sin(angle)]) * 16).astype(int)
mat = utils.get_transform_matrix(obj_mask.shape[0], args.grasp_resolution, 1.0/scale)
pix0 = (np.array([p0[0], p0[1], 1]) @ mat).astype(int)[:2]
pix1 = (np.array([p1[0], p1[1], 1]) @ mat).astype(int)[:2]
if np.min(pix0) < 0 or np.max(pix0) >= obj_mask.shape[0] or obj_mask[pix0[0], pix0[1]] == 0:
continue
if np.min(pix1) < 0 or np.max(pix1) >= obj_mask.shape[0] or obj_mask[pix1[0], pix1[1]] == 1:
continue
mat = utils.get_transform_matrix(args.grasp_resolution, args.grasp_resolution, 1.0/scale)
p0 = (np.array([p0[0], p0[1], 1]) @ mat).astype(int)[:2]
p1 = (np.array([p1[0], p1[1], 1]) @ mat).astype(int)[:2]
d0 = np.linalg.norm(p0 - np.array([(args.grasp_resolution - 1) / 2, -args.grasp_resolution * 0.1]))
d1 = np.linalg.norm(p1 - np.array([(args.grasp_resolution - 1) / 2, -args.grasp_resolution * 0.1]))
if max(d0, d1) < args.grasp_resolution * 0.6:
return action
d0 = np.linalg.norm(p0 - np.array([(args.grasp_resolution - 1) / 2, args.grasp_resolution * (1+0.1)]))
d1 = np.linalg.norm(p1 - np.array([(args.grasp_resolution - 1) / 2, args.grasp_resolution * (1+0.1)]))
if max(d0, d1) < args.grasp_resolution * 0.6:
return action
return action
def collect_data(envs, args, line_masks, task_ids,
grasp_model, grasp_device, grasp_replay_buffer_path, grasp_epsilon,
blow_model, blow_device, blow_replay_buffer_path, blow_epsilon, real_env=False):
# torch preparation
if grasp_model is not None:
grasp_model.eval()
if blow_model is not None:
blow_model.eval()
torch.set_grad_enabled(False)
# reset
max_cover_area, cover_area, init_observation = utils.reset_envs(envs, args.task, args.task_num, task_ids)
data_sequence = list()
for grasp_step in trange(args.grasp_step_num):
grasp_init_cover_area = cover_area
data = {
'init_cover_area': grasp_init_cover_area,
'init_cover_percentage': [x / y for x, y in zip(cover_area, max_cover_area)]
}
data_sequence.append(data)
# grasping
grasping_info = list()
grasping_actions = list()
if args.grasp_policy == 'random':
grasping_actions = utils.get_grasping_acitons(envs)
elif args.grasp_policy == 'heuristic':
grasp_image_input = [cv2.resize(obs['color_img'], (args.grasp_resolution, args.grasp_resolution)) for obs in init_observation]
scene_input = np.stack(grasp_image_input).transpose([0, 3, 1, 2]).astype(np.float32)
scene_input = torch.from_numpy(scene_input).to(grasp_device)
affordance_maps = grasp_model(scene_input).cpu().numpy() # [B, N, W, H]
data['affordance_maps'] = affordance_maps
for i in range(len(envs)):
depth_image = init_observation[i]['depth_img']
obj_mask = get_obj_mask(grasp_image_input[i])
if np.random.rand() > grasp_epsilon:
action = get_grasp_action(affordance_maps[i], line_masks, obj_mask, args)
if action is None:
angle_id = 0
pixel = np.array([0, 0])
else:
angle_id = action[0]
pixel = action[1:]
else:
non_zeros = np.stack(np.nonzero(obj_mask), axis=1)
pixel_id = np.random.choice(len(non_zeros))
pixel = non_zeros[pixel_id]
angle_id = np.random.choice(args.grasp_rotation_num)
score = affordance_maps[i, angle_id, pixel[0], pixel[1]]
direction = line_masks[angle_id]['direction']
obj_mask = get_obj_mask(grasp_image_input[i])
line_mask = get_line_mask(line_masks, pixel, angle_id, args.grasp_resolution)
mask = line_mask * obj_mask
valid_action = True
if np.max(mask) == 0:
valid_action = False
else:
pixel_candidates = np.stack(np.nonzero(mask), axis=1)
dist = np.sum((pixel_candidates - np.array(pixel)) * direction, axis=1)
p0 = pixel_candidates[np.argmin(dist)]
p1 = pixel_candidates[np.argmax(dist)]
if np.max(dist) < 0 or np.min(dist) > 0 or np.linalg.norm(p0 - p1) < 4:
valid_action = False
if valid_action:
mat = utils.get_transform_matrix(depth_image.shape[0], grasp_image_input[i].shape[0], 1)
pix0 = (mat @ np.array([p0[0], p0[1], 1])).astype(int)[:2]
pix1 = (mat @ np.array([p1[0], p1[1], 1])).astype(int)[:2]
if real_env:
grasping_actions.append([pix0, pix1])
else:
wrd_p0, wrd_p1 = utils.pixel_to_3d(depth_image, np.array([pix0, pix1]), args.cam_pose, args.cam_intr)
if wrd_p0[0] < wrd_p1[0]:
wrd_p0, wrd_p1 = wrd_p1, wrd_p0
grasping_actions.append([wrd_p0, wrd_p1])
else:
p0 = (pixel + args.grasp_resolution // 10 * direction).astype(int)
p1 = (pixel - args.grasp_resolution // 10 * direction).astype(int)
grasping_actions.append([[2, 1, 0], [2, 1, 0]])
if real_env:
img = grasp_image_input[0]
img = cv2.circle(img, [p0[1], p0[0]], 2, (0,0,0), 2)
img = cv2.circle(img, [p1[1], p1[0]], 2, (0,0,0), 2)
utils.imwrite('color_img.png', img)
# input('enter!')
grasping_info.append({
'scale': 1.0,
'angle_id': angle_id,
'angle': line_masks[angle_id]['angle'],
'center': pixel,
'score': score,
'end_points': [p0, p1],
'succ': valid_action
})
elif args.grasp_policy == 'flingbot':
affordance_maps = list()
for scale in args.grasp_scale_options:
crop_dim = int(init_observation[0]['color_img'].shape[0] / scale)
scale_imgs = [utils.crop_center(obs['color_img'], crop_dim) for obs in init_observation]
image_input = [cv2.resize(img, (args.grasp_resolution, args.grasp_resolution)) for img in scale_imgs]
scene_input = np.stack(image_input).transpose([0, 3, 1, 2]).astype(np.float32)
scene_input = torch.from_numpy(scene_input).to(grasp_device)
affordance_maps.append(grasp_model(scene_input).cpu().numpy()) # [B, S, W, H]
affordance_maps = np.stack(affordance_maps, axis=1) # [B, S, R, W, H]
data['affordance_maps'] = affordance_maps
grasp_image_input = list()
for i in range(len(envs)):
color_image = init_observation[i]['color_img']
depth_image = init_observation[i]['depth_img']
obj_mask = get_obj_mask(color_image)
if np.random.rand() > grasp_epsilon:
# action = np.array(np.unravel_index(np.argmax(affordance_maps[i]), affordance_maps[i].shape))
action = get_flingbot_action(affordance_maps[i], obj_mask, args)
scale_id = action[0]
angle_id = action[1]
pixel = action[2:]
else:
scale_id = np.random.choice(len(args.grasp_scale_options))
angle_id = np.random.choice(args.grasp_rotation_num)
pixel = np.random.choice(args.grasp_resolution, 2)
score = affordance_maps[i, scale_id, angle_id, pixel[0], pixel[1]]
angle = args.grasp_angle_options[angle_id]
scale = args.grasp_scale_options[scale_id]
p0 = (pixel + np.array([np.cos(angle), np.sin(angle)]) * 8).astype(int)
p1 = (pixel - np.array([np.cos(angle), np.sin(angle)]) * 8).astype(int)
crop_dim = int(color_image.shape[0] / scale)
scale_img = utils.crop_center(color_image, crop_dim)
grasp_image_input.append(cv2.resize(scale_img, (args.grasp_resolution, args.grasp_resolution)))
mat = utils.get_transform_matrix(depth_image.shape[0], args.grasp_resolution, 1.0/scale)
pix0 = (np.array([p0[0], p0[1], 1]) @ mat).astype(int)[:2]
pix1 = (np.array([p1[0], p1[1], 1]) @ mat).astype(int)[:2]
valid_action = np.min([pix0[0], pix0[1], pix1[0], pix1[1]]) >= 0 and np.max([pix0[0], pix0[1], pix1[0], pix1[1]]) < depth_image.shape[0]
# if score < 0.005:
# valid_action = False
if valid_action:
if real_env:
grasping_actions.append([pix0, pix1])
else:
wrd_p0, wrd_p1 = utils.pixel_to_3d(depth_image, np.array([pix0, pix1]), args.cam_pose, args.cam_intr)
if wrd_p0[0] < wrd_p1[0]:
wrd_p0, wrd_p1 = wrd_p1, wrd_p0
grasping_actions.append([wrd_p0, wrd_p1])
else:
grasping_actions.append([[2, 1, 0], [2, 1, 0]])
if real_env:
img = grasp_image_input[0]
img = cv2.circle(img, [p0[1], p0[0]], 2, (0,0,0), 2)
img = cv2.circle(img, [p1[1], p1[0]], 2, (0,0,0), 2)
utils.imwrite('color_img.png', img)
# input('enter!')
grasping_info.append({
'scale': scale,
'angle_id': angle_id,
'angle': line_masks[angle_id]['angle'],
'center': pixel,
'score': score,
'end_points': [p0, p1],
'succ': valid_action
})
elif args.grasp_policy == 'pick_and_place':
affordance_maps = list()
for scale in args.grasp_scale_options:
crop_dim = int(init_observation[0]['color_img'].shape[0] / scale)
scale_imgs = [utils.crop_center(obs['color_img'], crop_dim) for obs in init_observation]
image_input = [cv2.resize(img, (args.grasp_resolution, args.grasp_resolution)) for img in scale_imgs]
scene_input = np.stack(image_input).transpose([0, 3, 1, 2]).astype(np.float32)
scene_input = torch.from_numpy(scene_input).to(grasp_device)
affordance_maps.append(grasp_model(scene_input).cpu().numpy()) # [B, S, W, H]
affordance_maps = np.stack(affordance_maps, axis=1) # [B, S, R, W, H]
data['affordance_maps'] = affordance_maps
grasp_image_input = list()
for i in range(len(envs)):
color_image = init_observation[i]['color_img']
depth_image = init_observation[i]['depth_img']
obj_mask = get_obj_mask(color_image)
if np.random.rand() > grasp_epsilon:
# action = np.array(np.unravel_index(np.argmax(affordance_maps[i]), affordance_maps[i].shape))
action = get_pick_and_place_action(affordance_maps[i], obj_mask, args)
scale_id = action[0]
angle_id = action[1]
pixel = action[2:]
else:
scale_id = np.random.choice(len(args.grasp_scale_options))
angle_id = np.random.choice(args.grasp_rotation_num)
pixel = np.random.choice(args.grasp_resolution, 2)
score = affordance_maps[i, scale_id, angle_id, pixel[0], pixel[1]]
angle = args.grasp_angle_options[angle_id]
scale = args.grasp_scale_options[scale_id]
p0 = pixel.astype(int)
p1 = (pixel + np.array([np.cos(angle), np.sin(angle)]) * 16).astype(int)
crop_dim = int(color_image.shape[0] / scale)
scale_img = utils.crop_center(color_image, crop_dim)
grasp_image_input.append(cv2.resize(scale_img, (args.grasp_resolution, args.grasp_resolution)))
mat = utils.get_transform_matrix(depth_image.shape[0], args.grasp_resolution, 1.0/scale)
pix0 = (np.array([p0[0], p0[1], 1]) @ mat).astype(int)[:2]
pix1 = (np.array([p1[0], p1[1], 1]) @ mat).astype(int)[:2]
valid_action = np.min([pix0[0], pix0[1], pix1[0], pix1[1]]) >= 0 and np.max([pix0[0], pix0[1], pix1[0], pix1[1]]) < depth_image.shape[0]
# print(i, obj_mask[pix0[0], pix0[1]], obj_mask[pix1[0], pix1[1]], color_image[pix0[0], pix0[1]], color_image[pix1[0], pix1[1]])
# if score < 0.005:
# valid_action = False
if valid_action:
if real_env:
grasping_actions.append([pix0, pix1])
else:
wrd_p0, wrd_p1 = utils.pixel_to_3d(depth_image, np.array([pix0, pix1]), args.cam_pose, args.cam_intr)
grasping_actions.append([wrd_p0, wrd_p1])
else:
grasping_actions.append([[2, 1, 0], [2, 1, 0]])
if real_env:
img = grasp_image_input[0]
img = cv2.circle(img, [p0[1], p0[0]], 2, (0,0,0), 2)
img = cv2.circle(img, [p1[1], p1[0]], 2, (0,0,0), 2)
utils.imwrite('color_img.png', img)
# input('enter!')
grasping_info.append({
'scale': scale,
'angle_id': angle_id,
'angle': line_masks[angle_id]['angle'],
'center': pixel,
'score': score,
'end_points': [p0, p1],
'succ': valid_action
})
else:
raise NotImplementedError(f'Grasp policy does not support \"{args.grasp_policy}\"')
if args.grasp_policy == 'pick_and_place':
lift_observation, stretch_observation, cover_area = utils.pick_and_place(envs, grasping_actions, lifting_height=0.15)
else:
lift_observation, stretch_observation, cover_area = utils.lift_and_stretch(envs, grasping_actions, lifting_height=0.12)
data['grasping_info'] = grasping_info
data['init_observation'] = init_observation
data['lift_observation'] = lift_observation
data['stretch_observation'] = stretch_observation
if args.blow_policy == 'fling':
cover_area, observation = utils.fling(envs)
data[f'blow_observation'] = observation
data[f'blow_cover_area'] = cover_area
data[f'blow_cover_percentage'] = [x / y for x, y in zip(cover_area, max_cover_area)]
elif args.blow_policy == 'box':
cover_area, observation = utils.blow_box(envs, 120)
data[f'blow_observation'] = observation
data[f'blow_cover_area'] = cover_area
data[f'blow_cover_percentage'] = [x / y for x, y in zip(cover_area, max_cover_area)]
elif args.blow_policy == 'fixed':
current_observation = stretch_observation
# rx_list = [-30, 0, 30]
rx_list = [0]
for blow_step, rx in enumerate(rx_list):
blow_init_cover_area = cover_area
blow_actions = [np.array([0, 0.03, 0.45, rx / 180 * np.pi, 0, -105 / 180 * np.pi]) for env in envs]
image_input = [cv2.resize(obs['color_img'], (args.grasp_resolution, args.grasp_resolution)) for obs in current_observation]
cover_area, blow_observation = utils.blow(envs, blow_actions, args.blow_time)
data[f'blow_observation-{blow_step}'] = blow_observation
data[f'blow_observation_input-{blow_step}'] = image_input
data[f'blow_cover_area-{blow_step}'] = cover_area
data[f'blow_cover_percentage-{blow_step}'] = [x / y for x, y in zip(cover_area, max_cover_area)]
data[f'blow_init_cover_area-{blow_step}'] = blow_init_cover_area
data[f'blow_init_cover_percentage-{blow_step}'] = [x / y for x, y in zip(blow_init_cover_area, max_cover_area)]
data[f'blow_action-{blow_step}'] = blow_actions
current_observation = blow_observation
elif args.blow_policy == 'learn':
current_observation = stretch_observation
last_blow_actions = np.zeros([len(envs), 6])
for blow_step in range(args.blow_step_num):
blow_init_cover_area = cover_area
image_input = [cv2.resize(obs['color_img'], (args.blow_resolution, args.blow_resolution)) for obs in current_observation]
if args.blow_last_action and blow_step == 0:
action_candidates, score_candidates = None, None
blow_actions, scores = blow_model.get_forward_actions(len(envs))
else:
scene_input = np.stack(image_input).transpose([0, 3, 1, 2]).astype(np.float32)
scene_input = torch.from_numpy(scene_input).to(blow_device)
last_action = torch.from_numpy(np.array(last_blow_actions).astype(np.float32)).to(blow_device)
action_candidates, score_candidates = blow_model(scene_input, None, last_action)
score_candidates = score_candidates.cpu().numpy()
blow_actions, scores = get_blow_actions(action_candidates, score_candidates, blow_epsilon)
cover_area, blow_observation = utils.blow(envs, blow_actions, args.blow_time)
data[f'blow_observation-{blow_step}'] = blow_observation
data[f'blow_observation_input-{blow_step}'] = image_input
data[f'blow_actions-{blow_step}'] = action_candidates
data[f'blow_scores-{blow_step}'] = score_candidates
data[f'blow_cover_area-{blow_step}'] = cover_area
data[f'blow_cover_percentage-{blow_step}'] = [x / y for x, y in zip(cover_area, max_cover_area)]
data[f'blow_init_cover_area-{blow_step}'] = blow_init_cover_area
data[f'blow_init_cover_percentage-{blow_step}'] = [x / y for x, y in zip(blow_init_cover_area, max_cover_area)]
data[f'blow_action-{blow_step}'] = blow_actions
data[f'blow_score-{blow_step}'] = scores
if blow_replay_buffer_path is not None and (blow_step != 0 or not args.blow_last_action):
with FileLock(blow_replay_buffer_path + '.lock'):
with h5py.File(blow_replay_buffer_path, 'a') as dataset:
for i in range(len(envs)):
max_data_size = int(np.array(dataset['max_data_size']))
curr_data_size = min(int(np.array(dataset['curr_data_size'])) + 1, max_data_size)
current_idx = (int(np.array(dataset['current_idx'])) + 1) % max_data_size
dataset['current_idx'][...] = current_idx
dataset['curr_data_size'][...] = curr_data_size
group = dataset[f'data-{current_idx}'] if f'data-{current_idx}' in dataset.keys() else dataset.create_group(f'data-{current_idx}')
add_data(group, 'blow_action', blow_actions[i], False)
add_data(group, 'last_blow_action', last_blow_actions[i], False)
add_data(group, 'cover_area', cover_area[i], False)
add_data(group, 'init_cover_area', blow_init_cover_area[i], False)
add_data(group, 'color_image', image_input[i], True)
last_blow_actions = blow_actions
current_observation = blow_observation
elif args.blow_policy is None:
pass
else:
raise NotImplementedError(f'Blow policy does not support \"{args.blow_policy}\"')
cover_area, final_observation = utils.place(envs)
data[f'final_observation'] = final_observation
data[f'cover_area'] = cover_area
data[f'cover_percentage'] = [x / y for x, y in zip(cover_area, max_cover_area)]
if grasp_replay_buffer_path is not None and args.grasp_policy in ['flingbot', 'heuristic', 'pick_and_place']:
with FileLock(grasp_replay_buffer_path + '.lock'):
with h5py.File(grasp_replay_buffer_path, 'a') as dataset:
for i in range(len(envs)):
max_data_size = int(np.array(dataset['max_data_size']))
curr_data_size = min(int(np.array(dataset['curr_data_size'])) + 1, max_data_size)
current_idx = (int(np.array(dataset['current_idx'])) + 1) % max_data_size
dataset['current_idx'][...] = current_idx
dataset['curr_data_size'][...] = curr_data_size
group = dataset[f'data-{current_idx}'] if f'data-{current_idx}' in dataset.keys() else dataset.create_group(f'data-{current_idx}')
add_data(group, 'grasp_center', grasping_info[i]['center'], False)
add_data(group, 'grasp_angle', grasping_info[i]['angle'], False)
add_data(group, 'init_cover_area', grasp_init_cover_area[i], False)
add_data(group, 'cover_area', cover_area[i], False)
add_data(group, 'color_image', grasp_image_input[i], True)
init_observation = final_observation
return data_sequence
def visualization(args, data_sequence, line_masks, vis_path, title):
cmap = plt.get_cmap('jet')
html_data = {}
ids = [f'{i}-{j}' for i in range(args.visualization_num) for j in range(args.grasp_step_num)]
cols = ['init', 'grasp', 'lift', 'stretch', 'final']
if args.blow_policy in ['learn', 'fixed']:
for blow_step in range(args.blow_step_num):
cols.append(f'blow_score-{blow_step}')
cols.append(f'blow_obs-{blow_step}')
cols.append(f'blow_particle-{blow_step}')
if args.grasp_policy == 'heuristic':
cols += [f'affordance-{angle_id}' for angle_id in range(len(args.grasp_angle_options))]
elif args.grasp_policy in ['flingbot', 'pick_and_place']:
cols += [f'affordance-{angle_id}-{scale_id}' for angle_id in range(len(args.grasp_angle_options)) for scale_id in range(len(args.grasp_scale_options))]
for grasp_step in range(args.grasp_step_num):
data = data_sequence[grasp_step]
for env_id in range(args.visualization_num):
depth_image = data['init_observation'][env_id]['depth_img']
color_image = data['init_observation'][env_id]['color_img']
html_data[f'{env_id}-{grasp_step}_init'] = color_image
grasp_img = color_image.copy()
text_scale = 1 if grasp_img.shape[0] == 720 else 2/3
text_p1 = (np.array([25, 50]) * text_scale).astype(int)
text_p2 = (np.array([25, 100]) * text_scale).astype(int)
text_p3 = (np.array([25, 150]) * text_scale).astype(int)
id_p = [grasp_img.shape[0] - int(70 * text_scale), int(100 * text_scale)]
fontScale = 1.5 * text_scale
thickness = int(3 * text_scale)
if args.grasp_policy in ['heuristic', 'flingbot', 'pick_and_place']:
pixel = data['grasping_info'][env_id]['center']
scale = data['grasping_info'][env_id]['scale']
angle_id = data['grasping_info'][env_id]['angle_id']
p0, p1 = data['grasping_info'][env_id]['end_points']
color = (0, 0, 0) if data['grasping_info'][env_id]['succ'] else (255, 255, 255)
mat = utils.get_transform_matrix(depth_image.shape[0], args.grasp_resolution, 1.0/scale)
pixel = (np.array([pixel[0], pixel[1], 1]) @ mat).astype(int)[:2]
p0 = (np.array([p0[0], p0[1], 1]) @ mat).astype(int)[:2]
p1 = (np.array([p1[0], p1[1], 1]) @ mat).astype(int)[:2]
grasp_img = cv2.circle(grasp_img, [pixel[1], pixel[0]], 9, color, 9)
grasp_img = cv2.circle(grasp_img, [p0[1], p0[0]], 6, color, 6)
grasp_img = cv2.circle(grasp_img, [p1[1], p1[0]], 6, color, 6)
grasp_img = cv2.line(grasp_img, [pixel[1], pixel[0]], [p0[1], p0[0]], color, 6)
grasp_img = cv2.line(grasp_img, [pixel[1], pixel[0]], [p1[1], p1[0]], color, 6)
grasp_img = cv2.putText(grasp_img, f'[{pixel[0]}, {pixel[1]}] / {angle_id}', text_p1, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=fontScale, color=(255,255,255), thickness=thickness)
html_data[f'{env_id}-{grasp_step}_grasp'] = grasp_img
html_data[f'{env_id}-{grasp_step}_lift'] = data['lift_observation'][env_id]['color_img']
html_data[f'{env_id}-{grasp_step}_stretch'] = data['stretch_observation'][env_id]['color_img']
final_img = data['final_observation'][env_id]['color_img'].copy()
score = data['grasping_info'][env_id]['score'] if args.grasp_policy in ['heuristic', 'flingbot', 'pick_and_place'] else -1
cover_area = data['cover_area'][env_id]
delta_area = data['cover_area'][env_id] - data['init_cover_area'][env_id]
cover_percentage = data['cover_percentage'][env_id]
delta_percentage = data['cover_percentage'][env_id] - data['init_cover_percentage'][env_id]
final_img = cv2.putText(final_img, f'score:{score:.3f}', text_p1, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=fontScale, color=(255,255,255), thickness=thickness)
final_img = cv2.putText(final_img, f'area:{cover_area:.3f} ({delta_area:.3f})', text_p2, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=fontScale, color=(255,255,255), thickness=thickness)
final_img = cv2.putText(final_img, f'ratio:{cover_percentage:.3f} ({delta_percentage:.3f})', text_p3, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=fontScale, color=(255,255,255), thickness=thickness)
html_data[f'{env_id}-{grasp_step}_final'] = final_img
if args.grasp_policy == 'heuristic':
obj_mask = get_obj_mask(cv2.resize(color_image, (args.grasp_resolution, args.grasp_resolution)))
affordance_maps = data['affordance_maps'][env_id]
affordance_maps_normalized = affordance_maps.copy()
affordance_maps_normalized /= np.max(np.abs(affordance_maps_normalized))
affordance_maps_normalized = affordance_maps_normalized / 2 + 0.5
for angle_id in range(len(args.grasp_angle_options)):
pixel = np.array(np.unravel_index(np.argmax(affordance_maps[angle_id]), affordance_maps[angle_id].shape))
vis_affordance_map = cmap(affordance_maps_normalized[angle_id])[:, :, :3] * 0.8 + obj_mask[:, :, np.newaxis] * 0.2
line_mask = get_line_mask(line_masks, pixel, angle_id, args.grasp_resolution)
direction = line_masks[angle_id]['direction']
mask = line_mask * obj_mask
valid_action = True
if np.max(mask) == 0:
valid_action = False
else:
pixel_candidates = np.stack(np.nonzero(mask), axis=1)
dist = np.sum((pixel_candidates - np.array(pixel)) * direction, axis=1)
p0 = pixel_candidates[np.argmin(dist)]
p1 = pixel_candidates[np.argmax(dist)]
if np.max(dist) < 0 or np.min(dist) > 0 or np.linalg.norm(p0 - p1) < 4:
valid_action = False
vis_affordance_map = (vis_affordance_map * 255).astype(np.uint8)
color = (0, 0, 0) if valid_action else (255, 255, 255)
vis_affordance_map = cv2.circle(vis_affordance_map, [pixel[1], pixel[0]], 3, color, 3)
if valid_action:
vis_affordance_map = cv2.circle(vis_affordance_map, [p0[1], p0[0]], 2, color, 2)
vis_affordance_map = cv2.circle(vis_affordance_map, [p1[1], p1[0]], 2, color, 2)
vis_affordance_map = cv2.line(vis_affordance_map, [pixel[1], pixel[0]], [p0[1], p0[0]], color, 2)
vis_affordance_map = cv2.line(vis_affordance_map, [pixel[1], pixel[0]], [p1[1], p1[0]], color, 2)
vis_affordance_map = cv2.putText(vis_affordance_map, f'score:{np.max(affordance_maps[angle_id]):.3f}', (8, 18), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.6, color=(255,255,255), thickness=1)
html_data[f'{env_id}-{grasp_step}_affordance-{angle_id}'] = vis_affordance_map
elif args.grasp_policy in ['flingbot', 'pick_and_place']:
affordance_maps = data['affordance_maps'][env_id]
affordance_maps_normalized = affordance_maps.copy()
affordance_maps_normalized /= np.max(np.abs(affordance_maps_normalized))
affordance_maps_normalized = affordance_maps_normalized / 2 + 0.5
for scale_id in range(len(args.grasp_scale_options)):
scale = args.grasp_scale_options[scale_id]
crop_dim = int(color_image.shape[0] / scale)
obj_mask = get_obj_mask(cv2.resize(utils.crop_center(color_image, crop_dim), (args.grasp_resolution, args.grasp_resolution)))
for angle_id in range(len(args.grasp_angle_options)):
vis_affordance_map = cmap(affordance_maps_normalized[scale_id, angle_id])[:, :, :3] * 0.8 + obj_mask[:, :, np.newaxis] * 0.2
html_data[f'{env_id}-{grasp_step}_affordance-{angle_id}-{scale_id}'] = vis_affordance_map
if args.blow_policy in ['fixed', 'learn']:
for blow_step in range(args.blow_step_num):
action = data[f'blow_action-{blow_step}'][env_id]
cover_area = data[f'blow_cover_area-{blow_step}'][env_id]
cover_percentage = data[f'blow_cover_percentage-{blow_step}'][env_id]
delta_area = data[f'blow_cover_area-{blow_step}'][env_id] - data[f'blow_init_cover_area-{blow_step}'][env_id]
delta_percentage = data[f'blow_cover_percentage-{blow_step}'][env_id] - data[f'blow_init_cover_percentage-{blow_step}'][env_id]
blow_score_bg = np.tile(get_obj_mask(data[f'blow_observation_input-{blow_step}'][env_id])[:, :, np.newaxis], 3)
blow_score_img = np.zeros_like(blow_score_bg)
if args.blow_policy == 'learn' and data[f'blow_actions-{blow_step}'] is not None:
cmap = plt.get_cmap('jet')
actions = data[f'blow_actions-{blow_step}'][:, env_id]
scores = data[f'blow_scores-{blow_step}'][:, env_id]
scores -= np.min(scores)
scores /= max(np.max(scores), 0.1)
action_color = cmap(scores)[:, :3]
for k in range(args.blow_action_sample_num):
angle = actions[k][3]+np.pi
st = np.array([202, 127.5 + actions[k][0] * 120]).astype(int)
fi = (st + np.array([np.cos(angle), np.sin(angle)]) * 150).astype(int)
blow_score_img = cv2.line(blow_score_img, [st[1], st[0]], [fi[1], fi[0]], action_color[k], 1)
blow_score_img = ((blow_score_img * 0.8 + blow_score_bg * 0.2) * 255).astype(np.uint8)
html_data[f'{env_id}-{grasp_step}_blow_score-{blow_step}'] = blow_score_img
obs_img = data[f'blow_observation-{blow_step}'][env_id]['color_img'].copy()
if args.blow_policy == 'learn':
score = data[f'blow_score-{blow_step}'][env_id]
obs_img = cv2.putText(obs_img, f'score:{score:.3f}', text_p1, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=fontScale, color=(255,255,255), thickness=thickness)
obs_img = cv2.putText(obs_img, f'area:{cover_area:.3f} ({delta_area:.3f})', text_p2, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=fontScale, color=(255,255,255), thickness=thickness)
obs_img = cv2.putText(obs_img, f'ratio:{cover_percentage:.3f} ({delta_percentage:.3f})', text_p3, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=fontScale, color=(255,255,255), thickness=thickness)
obs_img = cv2.putText(obs_img, f'{blow_step}', id_p, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=fontScale*2, color=(255,255,255), thickness=thickness*2)
html_data[f'{env_id}-{grasp_step}_blow_obs-{blow_step}'] = obs_img
particle_img = data[f'blow_observation-{blow_step}'][env_id]['particle_view_color_img'].copy()
particle_img = cv2.putText(particle_img, f'p:{action[0]:.2f}, {action[1]:.2f}, {action[2]:.2f}', text_p1, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1.5, color=(255,255,255), thickness=3)
particle_img = cv2.putText(particle_img, f'r:{action[3]/np.pi*180:.1f}, {action[4]/np.pi*180:.1f}, {action[5]/np.pi*180:.1f}', text_p2, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1.5, color=(255,255,255), thickness=3)
particle_img = cv2.putText(particle_img, f'{blow_step}', (650, 100), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=3, color=(255,255,255), thickness=8)
html_data[f'{env_id}-{grasp_step}_blow_particle-{blow_step}'] = particle_img
utils.html_visualize(vis_path, html_data, ids, cols, title=title, clean=False)
def main(args):
# Set wandb
wandb.init(
project='cloth-unfolding-train',
name=args.exp
)
wandb.config.update(args)
# Save arguments
exp_dir = os.path.join('exp', args.exp)
utils.mkdir(exp_dir, clean=True)
str_list = []
for key in vars(args):
print('[{0}] = {1}'.format(key, getattr(args, key)))
str_list.append('--{0}={1} \\'.format(key, getattr(args, key)))
with open(os.path.join('exp', args.exp, 'args.txt'), 'w+') as f:
f.write('\n'.join(str_list))
# Set directory. e.g. visualization, model snapshot
args.visualization_dir = os.path.join('exp', args.exp, 'visualization')
utils.mkdir(args.visualization_dir)
args.model_dir = os.path.join('exp', args.exp, 'models')
utils.mkdir(args.model_dir)
# Set replay buffer
grasp_replay_buffer_path = os.path.join('exp', args.exp, 'grasp_replay_buffer.hdf5')
with h5py.File(grasp_replay_buffer_path, 'a') as data:
data['max_data_size'] = args.grasp_replay_buffer_size; data['curr_data_size'] = 0; data['current_idx'] = -1
blow_replay_buffer_path = os.path.join('exp', args.exp, 'blow_replay_buffer.hdf5')
with h5py.File(blow_replay_buffer_path, 'a') as data:
data['max_data_size'] = args.blow_replay_buffer_size; data['curr_data_size'] = 0; data['current_idx'] = -1
# ray env
grasp_device = torch.device(f'cuda:{args.grasp_gpu}' if torch.cuda.is_available() else 'cpu')
blow_device = torch.device(f'cuda:{args.blow_gpu}' if torch.cuda.is_available() else 'cpu')
os.environ['CUDA_VISIBLE_DEVICES'] = args.pyflex_gpus
num_pyflex_gpus = len(args.pyflex_gpus.split(','))
ray.init()
RaySimEnv = ray.remote(SimEnv).options(num_cpus=1, num_gpus=num_pyflex_gpus/args.env_num)
envs = [RaySimEnv.remote(gui=False, wind_life_time=args.wind_life_time, large_grasp=False, pick_and_place=args.grasp_policy == 'pick_and_place') for _ in range(args.env_num)]
# get camera matrix (intr, pose)
args.cam_intr, args.cam_pose = ray.get(envs[0].get_camera_matrix.remote())
# Set model & optimizer & criteria
print('==> Preparing model & optimizer')
if args.grasp_policy in ['heuristic', 'flingbot', 'pick_and_place']:
grasp_model = GraspModel(model_type=args.grasp_policy, rotation_num=args.grasp_rotation_num).to(grasp_device)
grasp_optimizer = torch.optim.Adam(grasp_model.parameters(), lr=args.grasp_learning_rate, weight_decay=args.grasp_weight_decay)
else:
grasp_model=None; grasp_optimizer = None
if args.blow_policy == 'learn':
blow_model = BlowModel(action_sample_num=args.blow_action_sample_num, x_range=args.blow_x_range, z_rotation=args.blow_z_rotation, last_action=args.blow_last_action).to(blow_device)
blow_optimizer = torch.optim.Adam(blow_model.parameters(), lr=args.blow_learning_rate, weight_decay=args.blow_weight_decay)
else:
blow_model = None; blow_optimizer = None
criteria = torch.nn.MSELoss()
# Load checkpoint
if args.grasp_checkpoint is not None:
print(f'==> Loading grasping checkpoint from {args.grasp_checkpoint}')
if args.grasp_checkpoint.endswith('.pth'):
checkpoint = torch.load(args.grasp_checkpoint)
else:
checkpoint = torch.load(os.path.join('exp', args.grasp_checkpoint, 'models', 'grasp_latest.pth'))
grasp_model.load_state_dict(checkpoint['state_dict'])
grasp_optimizer.load_state_dict(checkpoint['optimizer'])
print(f'==> Loaded grasping checkpoint from {args.grasp_checkpoint}')
if args.blow_checkpoint is not None:
print(f'==> Loading blowing checkpoint from {args.blow_checkpoint}')
if args.blow_checkpoint.endswith('.pth'):
checkpoint = torch.load(args.blow_checkpoint, map_location=grasp_device)
else:
checkpoint = torch.load(os.path.join('exp', args.blow_checkpoint, 'models', 'blow_latest.pth'), map_location=grasp_device)
blow_model.load_state_dict(checkpoint['state_dict'])
blow_optimizer.load_state_dict(checkpoint['optimizer'])
print(f'==> Loaded blowing checkpoint from {args.blow_checkpoint}')
line_masks = generate_line_masks(args.grasp_rotation_num, args.grasp_resolution)
for epoch in range(args.epoch):
grasp_epsilon = 0.1 if epoch > 90 or args.grasp_checkpoint is not None else 1.0 - epoch / 100
blow_epsilon = 0.1 if epoch > 45 or args.blow_checkpoint is not None else 1.0 - epoch / 50
wandb_info = {
'exp-info/grasp-epsilon': grasp_epsilon,
'exp-info/blow-epsilon': blow_epsilon
}
print(f'==> epoch = {epoch}, grasp_epsilon = {grasp_epsilon:.3f}, blow_epsilon = {blow_epsilon:.3f}')
epoch_start_time = time.time()
# collect data
data_sequence = collect_data(
envs, args, line_masks, None,
grasp_model, grasp_device, grasp_replay_buffer_path, grasp_epsilon,
blow_model, blow_device, blow_replay_buffer_path, blow_epsilon
)
collect_data_time = time.time() - epoch_start_time
wandb_info[f'grasp-cover-percentage/init'] = np.nanmean(data_sequence[0]['init_cover_percentage'])
if args.blow_policy in ['fixed', 'learn']:
wandb_info[f'blow-cover-percentage/init'] = list()
for blow_step in range(args.blow_step_num):
wandb_info[f'blow-cover-percentage/step-{blow_step}'] = list()
for grasp_step in range(args.grasp_step_num):
wandb_info[f'grasp-cover-percentage/step-{grasp_step}'] = np.nanmean(data_sequence[grasp_step]['cover_percentage'])
wandb_info[f'grasp-succ/step-{grasp_step}'] = np.nanmean([info['succ'] for info in data_sequence[grasp_step]['grasping_info']])
if args.blow_policy in ['fixed', 'learn']:
wandb_info[f'blow-cover-percentage/init'].append(np.nanmean(data_sequence[grasp_step][f'blow_init_cover_percentage-0']))
for blow_step in range(args.blow_step_num):
wandb_info[f'blow-cover-percentage/step-{blow_step}'].append(np.nanmean(data_sequence[grasp_step][f'blow_cover_percentage-{blow_step}']))
if args.blow_policy in ['fixed', 'learn']:
wandb_info[f'blow-cover-percentage/init'] = np.nanmean(wandb_info[f'blow-cover-percentage/init'])
for blow_step in range(args.blow_step_num):
wandb_info[f'blow-cover-percentage/step-{blow_step}'] = np.nanmean(wandb_info[f'blow-cover-percentage/step-{blow_step}'])
# train
torch.set_grad_enabled(True)
if grasp_model is not None:
grasp_model.train()
dataset = GraspDataset(grasp_replay_buffer_path)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=args.grasp_batch_size, shuffle=True, num_workers=args.num_workers)
data_loader_iter = iter(data_loader)
train_loss, train_pred, train_gt, data_num = 0, 0, 0, 0
for i in trange(min(len(data_loader), args.grasp_iter_per_epoch)):
observation, grasp_center, grasp_angle, reward = next(data_loader_iter)
batch_size = observation.size(0)
if batch_size == 1:
continue
grasp_center = grasp_center.numpy()
grasp_angle = grasp_angle.numpy()
pred = grasp_model(observation.to(grasp_device), [grasp_angle]) # [B, 1, W, H]
pred = pred[np.arange(batch_size), 0, grasp_center[:, 0], grasp_center[:, 1]]
gt = reward.to(grasp_device)
loss = criteria(pred, gt) * 1000
train_loss += loss.item() * batch_size
train_pred += torch.sum(pred).item()
train_gt += torch.sum(gt).item()
data_num += batch_size
grasp_optimizer.zero_grad()
loss.backward()
grasp_optimizer.step()
train_loss /= data_num
train_pred /= data_num
train_gt /= data_num
print(f'[Grasp] train loss = {train_loss:.4f}, pred = {train_pred:.4f}, gt = {train_gt:.4f}, replay buffer size = {len(dataset)}')
wandb_info['training/grasp-loss'] = train_loss
wandb_info['training/grasp-pred'] = train_pred
wandb_info['training/grasp-gt'] = train_gt
wandb_info['exp-info/grasp-replay-buffer-size'] = len(dataset)
if blow_model is not None and epoch >= args.blow_freeze_epoch:
dataset = BlowDataset(blow_replay_buffer_path)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=args.blow_batch_size, shuffle=True, num_workers=args.num_workers)
data_loader_iter = iter(data_loader)
train_loss, train_pred, train_gt, data_num = 0, 0, 0, 0
for i in trange(min(len(data_loader), args.blow_iter_per_epoch)):
observation, action, last_action, reward = next(data_loader_iter)
batch_size = observation.size(0)
if batch_size == 1:
continue
pred = blow_model(observation.to(blow_device), action.to(blow_device), last_action.to(blow_device))
gt = reward.to(blow_device)
loss = criteria(pred, gt) * 1000.0
train_loss += loss.item() * batch_size
train_pred += torch.sum(pred).item()
train_gt += torch.sum(gt).item()
data_num += batch_size
blow_optimizer.zero_grad()
loss.backward()
blow_optimizer.step()
train_loss /= data_num
train_pred /= data_num
train_gt /= data_num
print(f'[Blow] train loss = {train_loss:.4f}, pred = {train_pred:.4f}, gt = {train_gt:.4f}, replay buffer size = {len(dataset)}')
wandb_info['training/blow-loss'] = train_loss
wandb_info['training/blow-pred'] = train_pred
wandb_info['training/blow-gt'] = train_gt
wandb_info['exp-info/blow-replay-buffer-size'] = len(dataset)
wandb.log(wandb_info)
total_time = time.time() - epoch_start_time
train_time = total_time - collect_data_time
print(f'{total_time:.2f}(total) = {collect_data_time:.2f}(data) + {train_time:.2f}(train)')
if epoch == 0 or (epoch + 1) % args.snapshot_gap == 0:
# visualization
print('...visualizating...')
data_sequence = collect_data(
envs, args, line_masks, None,
grasp_model, grasp_device, grasp_replay_buffer_path, 0,
blow_model, blow_device, blow_replay_buffer_path, 0
)
vis_path = os.path.join(args.visualization_dir, 'epoch_%06d' % (epoch + 1))
title = f'{epoch+1}-{args.exp}'
visualization(args, data_sequence, line_masks, vis_path, title)
# save checkpoint
if grasp_model is not None:
save_state = {
'state_dict': grasp_model.state_dict(),
'optimizer': grasp_optimizer.state_dict(),
'epoch': epoch + 1
}
torch.save(save_state, os.path.join(args.model_dir, 'grasp_latest.pth'))
shutil.copyfile(
os.path.join(args.model_dir, 'grasp_latest.pth'),
os.path.join(args.model_dir, 'grasp_epoch_%06d.pth' % (epoch + 1))
)
if blow_model is not None:
save_state = {
'state_dict': blow_model.state_dict(),
'optimizer': blow_optimizer.state_dict(),
'epoch': epoch + 1
}
torch.save(save_state, os.path.join(args.model_dir, 'blow_latest.pth'))
shutil.copyfile(
os.path.join(args.model_dir, 'blow_latest.pth'),
os.path.join(args.model_dir, 'blow_epoch_%06d.pth' % (epoch + 1))
)
if __name__=='__main__':
parser = argparse.ArgumentParser('Grasp')
# exp & dataset
parser.add_argument('--exp', type=str, default=None, help='exp name')
parser.add_argument('--task', default='Train_Normal_Rect', type=str, help='init state dataset path')
parser.add_argument('--task_num', default=2000, type=int, help='number of init state')
parser.add_argument('--epoch', default=1000, type=int, help='number of epoch')
parser.add_argument('--num_workers', default=8, type=int, help='num_workers of data loader')
parser.add_argument('--snapshot_gap', default=20, type=int, help='Frequence of saving the snapshot (e.g. visualization, model, optimizer)')
parser.add_argument('--visualization_num', default=8, type=int, help='visualization num')
# sim env
parser.add_argument('--pyflex_gpus', type=str, default='0,1,2,3,4,5,6,7', help='pyflex gpu ids')
parser.add_argument('--env_num', default=32, type=int, help='number of environment')
parser.add_argument('--wind_life_time', default=60, type=int, help='wind life time')
# policy
parser.add_argument('--policy', default='DextAIRity', type=str, choices=['DextAIRity', 'DextAIRity_random_grasp', 'DextAIRity_fixed', 'FlingBot', 'FlingBot_plus', 'Pick_and_Place'], help='type of policy')
# grasping
parser.add_argument('--grasp_step_num', default=5, type=int, help='number of grasping steps')
parser.add_argument('--grasp_rotation_num', default=8, type=int, help='number of arotations')
parser.add_argument('--grasp_replay_buffer_size', type=int, default=30000, help='replay buffer size of grasping training')
parser.add_argument('--grasp_gpu', type=str, default='0', help='grasping policy gpu id')
parser.add_argument('--grasp_learning_rate', default=1e-4, type=float, help='learning rate of the grasp optimizer')
parser.add_argument('--grasp_weight_decay', default=1e-6, type=float, help='weight decay of the grasp optimizer')
parser.add_argument('--grasp_iter_per_epoch', default=64, type=int, help='grasp training iteration per epoch')
parser.add_argument('--grasp_batch_size', default=16, type=int, help='grasp_batch size')
parser.add_argument('--grasp_checkpoint', type=str, default=None, help='exp name of grasp policy checkpoint')
# blowing
parser.add_argument('--blow_step_num', default=4, type=int, help='number of grasping steps')
parser.add_argument('--blow_time', default=150, type=int, help='number of steps of each blowing')
parser.add_argument('--blow_freeze_epoch', default=0, type=int, help='number of epoch to freeze the blowing model')
parser.add_argument('--blow_action_sample_num', default=64, type=int, help='number of action samples')
parser.add_argument('--blow_x_range', default=0.1, type=float, help='x range')
parser.add_argument('--blow_z_rotation', default=-95, type=float, help='z rotation')
parser.add_argument('--blow_last_action', type=str2bool, nargs='?', const=True, default=False, help="Input last action")
parser.add_argument('--blow_replay_buffer_size', type=int, default=30000, help='replay buffer size of blowing training')
parser.add_argument('--blow_gpu', type=str, default='1', help='blowing policy gpu id')
parser.add_argument('--blow_learning_rate', default=1e-4, type=float, help='learning rate of the blow optimizer')
parser.add_argument('--blow_weight_decay', default=1e-6, type=float, help='weight decay of the blow optimizer')
parser.add_argument('--blow_iter_per_epoch', default=64, type=int, help='blow training iteration per epoch')
parser.add_argument('--blow_batch_size', default=128, type=int, help='blow batch size')
parser.add_argument('--blow_checkpoint', type=str, default=None, help='exp name of blow policy checkpoint')
args = parser.parse_args()