-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathscan.go
70 lines (63 loc) · 1.65 KB
/
scan.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
package bigfft
import (
"math/big"
)
// FromDecimalString converts the base 10 string
// representation of a natural (non-negative) number
// into a *big.Int.
// Its asymptotic complexity is less than quadratic.
func FromDecimalString(s string) *big.Int {
var sc scanner
z := new(big.Int)
sc.scan(z, s)
return z
}
type scanner struct {
// powers[i] is 10^(2^i * quadraticScanThreshold).
powers []*big.Int
}
func (s *scanner) chunkSize(size int) (int, *big.Int) {
if size <= quadraticScanThreshold {
panic("size < quadraticScanThreshold")
}
pow := uint(0)
for n := size; n > quadraticScanThreshold; n /= 2 {
pow++
}
// threshold * 2^(pow-1) <= size < threshold * 2^pow
return quadraticScanThreshold << (pow - 1), s.power(pow - 1)
}
func (s *scanner) power(k uint) *big.Int {
for i := len(s.powers); i <= int(k); i++ {
z := new(big.Int)
if i == 0 {
if quadraticScanThreshold%14 != 0 {
panic("quadraticScanThreshold % 14 != 0")
}
z.Exp(big.NewInt(1e14), big.NewInt(quadraticScanThreshold/14), nil)
} else {
z.Mul(s.powers[i-1], s.powers[i-1])
}
s.powers = append(s.powers, z)
}
return s.powers[k]
}
func (s *scanner) scan(z *big.Int, str string) {
if len(str) <= quadraticScanThreshold {
z.SetString(str, 10)
return
}
sz, pow := s.chunkSize(len(str))
// Scan the left half.
s.scan(z, str[:len(str)-sz])
// FIXME: reuse temporaries.
left := Mul(z, pow)
// Scan the right half
s.scan(z, str[len(str)-sz:])
z.Add(z, left)
}
// quadraticScanThreshold is the number of digits
// below which big.Int.SetString is more efficient
// than subquadratic algorithms.
// 1232 digits fit in 4096 bits.
const quadraticScanThreshold = 1232