-
Notifications
You must be signed in to change notification settings - Fork 6
/
plnn.py
790 lines (625 loc) · 28.5 KB
/
plnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
import torch
import torch.nn as nn
import torch.nn.functional as F
from _polytope_ import Polytope, Face
import utilities as utils
from collections import OrderedDict
import numpy as np
import time
import copy
import convex_adversarial.convex_adversarial as ca
import full_lp as flp
class PLNN(nn.Module):
#TODO: determine if building net addition was necessary
# add some explanations for some methods
""" Simple piecewise neural net.
Fully connected layers and ReLus only
"""
def __init__(self, layer_sizes=None, bias=True, dtype=torch.FloatTensor):
super(PLNN, self).__init__()
if layer_sizes is None:
layer_sizes = [32, 64, 128, 64, 32, 10]
self.layer_sizes = layer_sizes
self.dtype = dtype
self.fcs = []
self.bias = bias
self.net = self.build_network(layer_sizes)
def build_network(self, layer_sizes):
layers = OrderedDict()
num = 1
for size_pair in zip(layer_sizes, layer_sizes[1:]):
size, next_size = size_pair
layer = nn.Linear(size, next_size, bias=self.bias).type(self.dtype)
layers[str(num)] = layer
self.fcs.append(layer)
num = num + 1
layers[str(num)] = nn.ReLU()
num = num + 1
del layers[str(num-1)] # No ReLU for the last layer
net = nn.Sequential(layers).type(self.dtype)
print(self.layer_sizes)
return net
def get_parameters(self):
params = []
for fc in self.fcs:
fc_params = [elem for elem in fc.parameters()]
for param in fc_params:
params.append(param)
return params
def config_str_to_config_list(self, config_str):
""" Given str of configs, converts to list of torch tensors of right
layer sizes
"""
assert isinstance(config_str, str)
assert len(config_str) == sum(self.layer_sizes[1:-1])
splits = []
running_idx = 0
for el in self.layer_sizes[1:-1]:
layer_config = config_str[running_idx:running_idx + el]
layer_config = torch.Tensor([float(el) for el in layer_config])
# Do some cuda nonsense here?
splits.append(layer_config)
running_idx += el
return splits
def relu_config(self, x, return_pre_relus=True):
pre_relus = self.forward_by_layer(x)
configs = [(pre_relu.squeeze() > 0).type(torch.float32)
for pre_relu in pre_relus]
if return_pre_relus:
return pre_relus, configs
else:
return configs
def make_adversarial_constraints(self, polytope, true_label,
domain):
""" Given a config computes the linear map in terms of this config
for all neurons INCLUDING the output neurons (logits) and generates
the polytope constraints for the neuron config and
constraints for each of the decision boundaries
configs - as usual
true_label -
"""
# Make all the adversarial_constraints:
#if(x) = Ax + b (in R^#logits)
# adversarial constraints are:
# f_true(x) - f_j(x) = 0 (for all j != true)
# ~ which is ~
# <a_true, x> + b_true - <a_j, x> - b_j = 0
# ~ which is ~
# <a_true - a_j, x> = b_j - b_true
total_a = polytope.linear_map['A']
total_b = polytope.linear_map['b']
num_logits = total_a.shape[0]
facets = []
true_a = total_a[true_label]
true_b = total_b[true_label]
for i in range(num_logits):
if i == true_label:
continue
dec_bound = {'A': true_a - total_a[i],
'b': total_b[i] - true_b}
new_facet = polytope.facet_constructor(None, facet_type='decision',
extra_tightness=dec_bound)
if new_facet.fast_domain_check():
facets.append(new_facet)
return facets
def compute_polytope_config(self, configs, comparison_form_flag=False,
uncertain_constraints=None, as_tensor=False):
lambdas = [torch.diag(config) for config in configs]
js = [torch.diag(-2 * config + 1) for config in configs]
# Compute Z_k = W_k * x + b_k for each layer
wks = [self.fcs[0].weight]
bks = [self.fcs[0].bias]
for (i, fc) in enumerate(self.fcs[1:]):
current_wk = wks[-1]
current_bk = bks[-1]
current_lambda = lambdas[i]
precompute = fc.weight.matmul(current_lambda)
wks.append(precompute.matmul(current_wk))
bks.append(precompute.matmul(current_bk) + fc.bias)
a_stack = []
b_stack = []
for j, wk, bk in zip(js, wks, bks):
a_stack.append(j.matmul(wk))
b_stack.append(-j.matmul(bk))
if as_tensor:
return {'a_stack': a_stack,
'b_stack': b_stack,
'total_a': wks[-1],
'total_b': bks[-1]}
polytope_A = utils.as_numpy(torch.cat(a_stack, dim=0))
polytope_b = utils.as_numpy(torch.cat(b_stack, dim=0))
if(comparison_form_flag):
polytope_A, polytope_b = utils.comparison_form(polytope_A, polytope_b)
return {'poly_a': polytope_A,
'poly_b': polytope_b,
'configs': configs,
'total_a': wks[-1],
'total_b': bks[-1]
}
def compute_polytope(self, x, comparison_form_flag=False, as_tensor=False):
pre_relus, configs = self.relu_config(x, return_pre_relus=True)
poly_out = self.compute_polytope_config(configs, comparison_form_flag,
as_tensor=as_tensor)
poly_out['pre_relus'] = pre_relus
return poly_out
def compute_matrix(self, configs):
M = torch.eye(self.layer_sizes[0])
for config, fc, layer_size in zip(configs, self.fcs, self.layer_sizes):
nullifier = torch.Tensor([config.numpy() for _ in range(0, layer_size)])
M_layer_prime = fc.weight * torch.transpose(nullifier, 0, 1)
M = torch.matmul(M_layer_prime, M)
M = torch.matmul(self.fcs[-1].weight, M)
return M
def forward_by_layer(self, x):
pre_relus = []
x = x.view(-1, self.layer_sizes[0])
for fc in self.fcs[:-1]:
x = fc(x)
pre_relus.append(x.clone())
x = F.relu(x)
return pre_relus
def forward(self, x):
x = x.view(-1, self.layer_sizes[0])
for fc in self.fcs[:-1]:
x = F.relu(fc(x))
return self.fcs[-1](x) # No ReLu on the last one
def compute_interval_bounds(self, domain_obj, compute_logit_bounds=False,
as_tensor=False):
""" For each neuron computes a bound for the range of values each
pre-ReLU can take.
ARGS:
domain_obj : Domain - object used to hold bounding boxes
on_off_format: boolean - if True, we return the more fine-grained
list which displays if neurons are on or
off, instead of stable
RETURNS:
returned_bounds : list of tensors giving pre-Relu bounds
uncertain_set: list of tensors with 1 if uncertain about this
neuron in the list
list of length (# fully connected layers - 1), where each element
is a tensor of shape (num_neurons, 2) for the bounds for the preReLU
"""
box = domain_obj.box_to_tensor()
# setup + asserts
assert all(box[:, 0] <= box[:, 1])
# Redoing this one more time
# Redo this but doing it right :
midpoint_matrix = torch.Tensor([[1.0], [1.0]]) / 2.0
ranges_matrix = torch.Tensor([[-1.0], [1.0]]) / 2.0
returned_bounds = []
dead_set = [] # list of tensors, 1 if always on or off
working_bounds = box
current_low, current_high = box[:, 0], box[:, 1]
if compute_logit_bounds:
layers_to_check = self.fcs
else:
layers_to_check = self.fcs[:-1]
for fc in layers_to_check:
weight, bias = fc.weight, fc.bias
weight_pos, weight_neg = utils.split_tensor_pos(weight)
new_high = (torch.matmul(weight_pos, current_high) +
torch.matmul(weight_neg, current_low))
new_low = (torch.matmul(weight_pos, current_low) +
torch.matmul(weight_neg, current_high))
if bias is not None:
new_high += bias
new_low += bias
returned_bounds.append(torch.stack([new_low, new_high], dim=1))
current_low = F.relu(new_low)
current_high = F.relu(new_high)
if as_tensor:
return returned_bounds
else:
return [utils.as_numpy(_) for _ in returned_bounds]
def compute_improved_ia_bounds(self, domain_obj):
""" Implements the improved interval bounds as presented here:
https://arxiv.org/pdf/1809.03008.pdf (appendix C)
[also done with gradients pushed through so we can build RS loss ]
# CODE HEAVILY BORROWED FROM https://github.com/MadryLab/relu_stable/blob/master/models/MNIST_improved_ia.py
# (but we're transposed from that code)
"""
box = domain_obj.box_to_tensor()
init_lows = box[:, 0]
init_highs = box[:, 1]
assert all(init_lows <= init_highs) # assert lows less than highs
layers_to_check = self.fcs[:-1] # set the
intermed_lows, intermed_highs = [], []
# define the recursive call
def recurs(layer_num, lows, highs, weights, biases):
assert len(lows) == len(highs) == len(weights) == len(biases) == layer_num
# current layer
low = lows[0]
high = highs[0]
weight = weights[0]
bias = biases[0]
# Base case
if layer_num == 1:
weight_pos, weight_neg = utils.split_tensor_pos(weight)
next_low = (torch.matmul(weight_pos, init_lows) +
torch.matmul(weight_neg, init_highs) + bias)
next_high = (toch.matmul(weight_pos, init_highs) +
torch.matmul(weight_neg, init_lows) + bias)
return next_low, next_high
# Recursive case
prev_weight = weights[1]
prev_bias = biases[1]
# Compute W_A, W_N (need to zero out COLUMNS here)
w_a = torch.matmul(weight, (low > 0).diag_embed())
w_n = weight - w_a
w_n_pos, w_n_neg = utils.split_tensor_pos(w_n)
w_prod = torch.matmul(w_a, prev_weight)
b_prod = torch.matmul(w_a, prev_bias)
# Compute prev layer bounds
prev_low = (torch.matmul(w_n_pos, low) +
torch.matmul(w_n_neg, high) + bias)
prev_high = (torch.matmul(w_n_pos, high) +
torch.matmul(w_n_neg, low) + bias)
# Recurse
deeper_lows, deeper_highs = recurs(layer_num - 1, lows[1:], highs[1:],
[w_prod] + weights[2:],
[b_prod] + biases[2:])
return (prev_low + deeper_lows, prev_high + deeper_highs)
# compute the lower and upper bounds for all neurons
running_lows = [init_lows]
running_highs = [init_highs]
running_weights = [self.fcs[0].weight]
running_biases = [self.fcs[0].bias]
for layer_num, layer in enumerate(self.fcs[:-1]):
new_lows, new_highs = recurs(layer_num + 1, running_lows, running_highs,
running_weights, running_biases)
running_lows = [new_lows] + running_lows
running_highs = [new_highs] + running_highs
running_weights = self.fcs[layer_num + 1].weight
running_biases = self.fcs[layer_num + 1].bias
return running_lows[::-1], running_highs[::-1]
def compute_full_lp_bounds(self, domain_obj):
""" Compute the full linear program values.
Code here is in a different file
"""
return flp.compute_full_lp_bounds(self, domain_obj)
def compute_dual_lp_bounds(self, domain_obj):
""" Use KW to actually find the bounds. Uses L_inf bounds to help
get better bounds
"""
low_bounds = torch.Tensor(domain_obj.box_low)
high_bounds = torch.Tensor(domain_obj.box_high)
midpoint = ((low_bounds + high_bounds) / 2.0).view(1, -1)
box_bounds = (low_bounds, high_bounds)
dual_net = ca.DualNetwork(self.net, midpoint, domain_obj.linf_radius,box_bounds=box_bounds).dual_net
bounds, dead_set = [], []
for el in dual_net:
if isinstance(el, ca.DualReLU):
bounds.append(torch.cat((el.zl.view(-1, 1), el.zu.view(-1, 1)),
dim=1))
dead_set.append(~el.I.squeeze())
return bounds
def compute_dual_ia_bounds(self, domain_obj):
""" Use both interval analysis and dual bounds to get best bounds """
ia = self.compute_interval_bounds(domain_obj)
dd = self.compute_dual_lp_bounds(domain_obj)
bounds = []
for i, d in zip(ia, dd):
stacked = torch.stack((i, d))
new_lows = torch.max(stacked[:, :, 0], dim=0)[0]
new_highs = torch.min(stacked[:, :, 1], dim=0)[0]
new_bounds = torch.stack((new_lows, new_highs), dim=1)
bounds.append(new_bounds)
return bounds
def fast_lip_all_vals(self, x, l_q, on_off_neurons):
""" Does the fast_value for all possible c's """
num_logits = self.fcs[-1].out_features
if not isinstance(x, torch.Tensor):
true_label = self(torch.Tensor(x)).max(1)[1].item()
else:
true_label = self(x).max(1)[1].item()
c_vecs, lip_values = [], []
for i in range(num_logits):
if true_label == i:
continue
c_vec = torch.zeros(num_logits)
c_vec[true_label] = 1.0
c_vec[i] = -1.0
lip_value = self.fast_lip(c_vec, l_q, on_off_neurons)
c_vecs.append(c_vec)
lip_values.append(lip_value)
return c_vecs, lip_values
def fast_lip(self, c_vector, l_q, on_off_neurons):
"""
Pytorch implementation of fast_lip. Might be buggy? Who knows?
see : https://arxiv.org/pdf/1804.09699.pdf for details
INPUTS:
c_vector: tensor that multiplies the output vector:
we compute gradient of c^Tf(x)
l_q : int - q_norm of lipschitzness that we compute
(is dual norm: e.g. if bounds come from an l_inf box,
this should be 1)
on_off_neurons : list of LongTensors (entries in -1, 0 or 1)
corresponding to the set of
(off, uncertain, on, respectively) neurons
inside the domain
RETURNS:
upper bound on lipschitz constant
"""
######################################################################
# First generate inputs needed by fast_lip algorithm #
######################################################################
# --- split off active and uncertain neurons
# -1 means off (don't care)
# 0 means UNCERTAIN
# 1 means ACTIVE
active_neuron_list, uncertain_neuron_list = [], []
for neuron_by_layer in on_off_neurons:
active_neuron_list.append((neuron_by_layer == 1))
uncertain_neuron_list.append((neuron_by_layer == 0))
# --- get list of weights, initialize placeholders
weights = [layer.weight for layer in self.fcs[:-1]]
weights.append(c_vector.matmul(self.fcs[-1].weight).view(1, -1))
constant_term = weights[0]
lowers = [torch.zeros_like(constant_term)]
uppers = [torch.zeros_like(constant_term)]
######################################################################
# Loop through layers using the _bound_layer_grad subroutine #
######################################################################
for i in range(len(weights) - 1):
subroutine_out = self._bound_layers_grad(constant_term, lowers[-1],
uppers[-1],
weights[i + 1],
active_neuron_list[i],
uncertain_neuron_list[i])
constant_term, upper, lower = subroutine_out
lowers.append(lower)
uppers.append(upper)
######################################################################
# Finalize and return the output #
######################################################################
low_bound = (constant_term + lowers[-1]).abs()
upp_bound = (constant_term + uppers[-1]).abs()
layerwise_max = torch.where(low_bound > upp_bound, low_bound, upp_bound)
return torch.norm(layerwise_max, p=l_q).item()
def _bound_layers_grad(self, constant_term, lower, upper, weight,
active_neurons, uncertain_neurons):
""" Subroutine for fast_lip.
Assume weight has shape [m, n]
ARGS: (let's make sure the types and shapes all mesh)
constant_term: floatTensor shape (n, n_0)
lower: floatTensor shape (n, n_0)
upper: floatTensor shape (n, n_0)
weight: floatTensor shape (m, n)
active_neurons: torch.Tensor shape (n,)
uncertain_neurons: torch.Tensor shape (n,)
RETURNS:
new constant term, lower, and upper, each with shape (m, n_0)
"""
# ASSERTS ON SHAPES FOR DEBUGGING
n_0 = self.layer_sizes[0]
n = weight.shape[1]
assert constant_term.shape == (n, n_0)
assert lower.shape == (n, n_0)
assert upper.shape == (n, n_0)
assert active_neurons.shape == (n,)
assert uncertain_neurons.shape == (n,)
# Make diagonals and split weights by +/-
active_diag = torch.diag(active_neurons).float()
uncertain_diag = torch.diag(uncertain_neurons).float()
pos_weight, neg_weight = utils.split_tensor_pos(weight)
# Compute the new constant_term
new_constant_term = weight.matmul(active_diag).matmul(constant_term)
# Make new upper bounds/lower bounds
cons_low = constant_term + lower
_, neg_cons_low = utils.split_tensor_pos(cons_low)
cons_upp = constant_term + upper
pos_cons_upp, _ = utils.split_tensor_pos(cons_upp)
new_upper = (pos_weight.matmul(active_diag).matmul(upper) +
neg_weight.matmul(active_diag).matmul(lower) +
neg_weight.matmul(uncertain_diag).matmul(neg_cons_low) +
pos_weight.matmul(uncertain_diag).matmul(pos_cons_upp))
new_lower = (pos_weight.matmul(active_diag).matmul(lower) +
neg_weight.matmul(active_diag).matmul(upper) +
pos_weight.matmul(uncertain_diag).matmul(neg_cons_low) +
neg_weight.matmul(uncertain_diag).matmul(pos_cons_upp))
return new_constant_term, new_upper, new_lower
class PLNN_seq(PLNN):
""" Simple piecewise neural net.
Fully connected layers and ReLus only
built from nn.Sequential
"""
def __init__(self, sequential, layer_sizes, dtype=torch.FloatTensor):
super(PLNN_seq, self).__init__(layer_sizes, dtype)
self.fcs = [layer for layer in sequential if type(layer) == nn.Linear]
self.net = sequential
class LinearRegionCollection(object):
""" Takes a ReturnObj and builds a lot of linear regions and stores them
"""
def __init__(self, plnn_obj, return_obj, objective_vec=None,
do_setup=False):
self.plnn_obj = plnn_obj
self.return_obj = return_obj
self.collection = {}
for config in return_obj.seen_polytopes:
self.collection[config] = LinearRegion(plnn_obj, config,
return_obj=return_obj,
objective_vec=objective_vec,
do_setup=do_setup)
def get_maximum_lipschitz_constant(self):
return max(_.get_lipschitz_constant()
for _ in self.collection.values())
def gradient_angle_list(self):
""" Gets the gradient angles between neighboring linear regions """
angle_list = {}
for (u, v) in self.return_obj.polytope_graph.keys():
u_grad = self.collection[u].get_gradient()
v_grad = self.collection[v].get_gradient()
angle_list[(u, v)] = utils.angle(u_grad, v_grad)
return angle_list
def gradient_magnitude_diff_list(self, grad_fxn=None):
""" Gets the magnitude of gradient difference
between neighboring linear regions
"""
if grad_fxn is None:
grad_fxn = lambda u, v: torch.norm(u - v).item()
output = {}
for (u, v) in self.return_obj.polytope_graph.keys():
u_grad = self.collection[u].get_gradient()
v_grad = self.collection[v].get_gradient()
output[(u, v)] = grad_fxn(u_grad, v_grad)
return output
def get_greedy_lipschitz_components(self):
""" Returns dict of str -> [str1, ..., ] mapping locally maximal
linear regions to the set of regions that will greedily
approach this local max
"""
# Let's just be really naive about this
def get_ascent_neighbor(node):
""" Gets the neighbor that has highest lipschitz constant
Returns None if nothing has higher than this one
"""
current = node.get_lipschitz_constant()
neighbors = [(_, _.get_lipschitz_constant())
for _ in node.get_neighbors()]
max_neighbor = max(neighbors, key=lambda p: p[1])
if max_neighbor[1] > current:
return max_neighbor[0]
return None
def greedy_search_single_node(start_config):
""" Start with a single sign_config and do greedy search
to find max_lipschitz constant. Return the sign_config
of the greedy search output
"""
current_node = self.collection[start_config]
while True:
next_node = get_ascent_neighbor(current_node)
if next_node is None:
break
else:
current_node = next_node
return current_node.sign_config
greedy_output = {}
for config in self.collection.keys():
greedy_parent = greedy_search_single_node(config)
if greedy_parent not in greedy_output:
greedy_output[greedy_parent] = []
greedy_output[greedy_parent].append(config)
return greedy_output
class LinearRegion(object):
""" Holds info and shortcuts to work with linear regions """
@classmethod
def process_return_obj(cls, plnn_obj, return_obj, objective_vec=None,
do_setup=False):
""" Given a GeoCertReturn object, will build a linear region for
all of the 'seen polytopes' and return the outputs in a
dict keyed on teh sign_configs
"""
output = {}
for config in return_obj.seen_polytopes:
output[config] = cls(plnn_obj, config,
return_obj=return_obj,
objective_vec=objective_vec,
do_setup=do_setup)
return output
def __init__(self, plnn_obj, sign_config, return_obj=None,
objective_vec=None, do_setup=False):
""" Initializes a Linear Region object
ARGS:
plnn_obj - the network this region is linear for
sign_config - the neuron configuration of the region
return_obj : GeoCertReturn object - if not None is an
output of GeoCert which contains info about
the linear regions.
"""
super(LinearRegion, self).__init__()
self.plnn_obj = plnn_obj
self.sign_config = sign_config
self.hex_config = hex(int(self.sign_config, 2))
self.return_obj = return_obj
self.objective_vec = objective_vec
# setting up attributes to be stored later
self._polytope_config = None
self.polytope = None
self.linear_map = None
self.jacobian = None
self.largest_sv = None
if do_setup:
self.setup()
def __repr__(self):
return "LinearRegion: %s" % self.hex_config
def get_neighbors(self):
""" If the return obj is not None, will error. Otherwise will
return a list of neighboring LinearRegion objects
"""
assert self.return_obj is not None
neigbor_list = []
for edge in self.return_obj.polytope_graph:
if self.sign_config == edge[0]:
neigbor_idx = 1
elif self.sign_config == edge[1]:
neigbor_idx = 0
else:
continue
neigbor_list.append(edge[neigbor_idx])
return [LinearRegion(self.plnn_obj, neigbor_config,
return_obj=self.return_obj,
objective_vec=self.objective_vec)
for neigbor_config in neigbor_list]
def _get_polytope_config(self):
if self._polytope_config is not None:
return self._polytope_config
plnn_obj = self.plnn_obj
config = plnn_obj.config_str_to_config_list(self.sign_config)
self._polytope_config = plnn_obj.compute_polytope_config(config)
return self._polytope_config
def setup(self):
self.get_polytope()
self.get_linear_map()
self.get_jacobian()
self.get_largest_singular_value()
def get_polytope(self):
""" For this linear region will return the polytope for which
the neural net satisfies the given neuron configuration
"""
if self.polytope is not None:
return self.polytope
_polytope_config = self._get_polytope_config()
self.polytope = {'A': _polytope_config['poly_a'],
'b': _polytope_config['poly_b']}
return self.polytope
def get_linear_map(self):
""" For this linear region will return a torch.nn.Linear
object corresponding to the linear map at this neuron
configuration
"""
if self.linear_map is not None:
return self.linear_map
_polytope_config = self._get_polytope_config()
A = nn.Parameter(_polytope_config['total_a'])
b = nn.Parameter(_polytope_config['total_b'])
linear_map = nn.Linear(*A.shape)
linear_map.weight = A
linear_map.bias = b
self.linear_map = linear_map
return self.linear_map
def get_jacobian(self):
""" For this linear region will get the jacobian at this
linear piece
"""
if self.jacobian is not None:
return self.jacobian
linear_map = self.get_linear_map()
self.jacobian = linear_map.weight
return self.jacobian
def get_largest_singular_value(self):
""" Will return the largest singular value of the jacobian
of this linear region
"""
if self.largest_sv is not None:
return self.largest_sv
jacobian = self.get_jacobian()
self.largest_sv = jacobian.svd().S[0].item()
return self.largest_sv
def get_gradient(self):
assert self.objective_vec is not None
return self.objective_vec.matmul(self.get_jacobian())
def get_lipschitz_constant(self):
if self.objective_vec is not None:
return self.objective_vec.matmul(self.get_jacobian()).norm().item()
else:
return self.get_largest_singular_value()