-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSL2PD.m
337 lines (267 loc) · 16.2 KB
/
SL2PD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
function status = SL2PD(Version_Name, Overwrite, Debug)
% Simplified Level 2 Processor D
% status = SL2PD(Version_Name,Overwrite Debug) returns status of SL2PD
% when provided with a parameter file corresponding to Version_Name.
%
% Inputs
%
% Version_Name : Name of Processor Parameter File.
% Overwrite : 1 overwriting of existing class database or regressions
% Debug : Debug level, 1 for debug output
%
% Outputs
%
% status : 1 no exceptions, 0 otherwise
%
% Created: Fred Baret and Marie Weiss, January 2006
% Modified: Richard July 2019
%% Initialisation of Matlab Environment
% .\CODE holds matlab source code and other libraries and executables
% ..\Tools holds generic MALTAB source code and libraries
%
% .\DATA holds data files requires by files in .\code
% ..\Filtres_Smac_SL2PD.mat - spectral response functions and smac coefficients
% ..\struct_Orbito_Sensor.m - code that generates orbital parameters
%
status = 1;
tic;
addpath(genpath('.\CODE'));
addpath(genpath('.\DATA'));
%% Definition of Dataset Name ,Regression Algorithm, Validation Database
% Read options for current simulation
Def_Base = Read_Start_Data(Version_Name);
% Read global description of calibration database
Def_Base = Read_Learning_Data(Def_Base);
% Création des directory 'Report'
Def_Base.Report_Dir=fullfile('.',['Report_' Def_Base.Name]);
if ~isdir(Def_Base.Report_Dir)
mkdir(Def_Base.Report_Dir)
else
if (Debug)
disp('Report Directory Exists ')
end
end
% Identification of directory 'Validation'
Def_Base.Validation_Dir=fullfile('.',['Report_' Def_Base.Validation_Name]);
if ~isdir(Def_Base.Validation_Dir)
if (Debug)
disp('No Validation Database Found, Validation Skipped ')
end
Def_Base.Validation_Dir= [];
end
%% Define regression algorithm and make a copy of the definition
Def_Base = Read_Alg_Archi(Def_Base);
if (Debug)
disp(['Regression Algorithm ',Def_Base.Algorithm_Name])
end
%% Create sensor sampling law for maximum number of simulations if it does not exist
% Verify the size of the created Sensor sampling Law is same as maximum
% number simulations
Def_Base = Read_Observations(Def_Base); % définition du capteur et des observations
try
load(fullfile(Def_Base.Report_Dir,'Law.mat'),'-mat')
catch
if (Debug)
disp('Creating distributions of observational conditions ')
end
Law=Create_Law_Obs(Def_Base); % creation des distributions des conditions d'observation
end
if (length(Law.View_Zenith) ~= Def_Base.Max_Sims)
if (Debug)
disp('Sensor sampling does not match maximum required simulations.');
end
status = 0;
return
end
%% Save definition and sensor sampling Law globally
save(fullfile(Def_Base.Report_Dir,'Law.mat'), 'Law','-mat')
save(fullfile(Def_Base.Report_Dir,'Def_Base.mat'), 'Def_Base','-mat')
%% Loop through all classes
for Class = 1:Def_Base.Num_Classes
%% create training database
try
%% load current database if it exists and overwrite not specified
if ( ~Overwrite)
% load the current class data base if it exists
load(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '_inout.mat']),'-mat')
else
% force error to make the database
ME = MException('MyComponent:noSuchVariable', ...
'Variable %s not found', inputstr);
throw(MException('Dummy'));
end
catch
%% Produce this class
% Make directories for this class
mkdir([Def_Base.Report_Dir '\Class_' num2str(Class)])
mkdir([Def_Base.Report_Dir '\Class_' num2str(Class) '\Learn_Data_Base'])
% Création des distributions de la base d'apprentissage
disp(['Reading Learning data base information for Class ' num2str(Class)])
Def_Base = Read_Canopy_Atmos(Def_Base,Class); % definition des distributions des variables d'entrée des modeles de la surface et de l'atmosphère
% graphiques de définition du sol et des capteurs
Plot_Sol_Bandes(Def_Base,Class);
% save definition for this class and globally
save(fullfile(Def_Base.Report_Dir,'Def_Base.mat'), 'Def_Base','-mat')
try
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','-append' )
catch
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat' )
end
% create and save canopy and atmsopeher parameter sampling Law for this class
disp(['Creating distributions of input variables for Class ' num2str(Class)])
Nb_Sims = Def_Base.(['Class_' num2str(Class)]).Nb_Sims;
[Law]=Create_Law_Var(Def_Base,Class,[],Law,Nb_Sims);
try
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','-append' )
catch
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat' )
end
% simulate using Law and specified RTM and save plots and results
[Input,Output,Law] = Build_Database( Def_Base, Law, Class,Def_Base.CopyFlag,Debug);
Plot_Law(Def_Base,Law,[],Class) % Edition des histogrammes des lois
try
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '_inout.mat']),'-mat','Input','Output','Law','-append' )
catch
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '_inout.mat']),'-mat','Input','Output','Law' )
end
% plot the noise free inputs and outputs for this class
Plot_Matrix_InOut(Def_Base, Law, Input, Output,Class);
%
% [Def_Base,Input_Noise]=Streamline_LAI_fAPAR(Def_Base,Output,Input_Noise,Law,Class); % Relations LAI/fAPAR
end
%% calibrate and/or validate regression algorithm if requested
Regression = Def_Base.Regression.(Def_Base.Algorithm_Name);
Input.Cats = Input.Cats';
try ( ~isempty(Regression.Method) )
% parse regression method name
P = (Regression.Partition_Name);
% define regression method
try
% check if algorithm already exists for this class
load(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Perf_Theo' );
load(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Results' );
if ( ~isempty('Perf_Theo') && ~isempty( 'Results' ) )
if ( Debug && ~isempty(Results.(Def_Base.Algorithm_Name).(P)))
disp(['Loaded results for ' Def_Base.Algorithm_Name '.' P ' for Class ' num2str(Class)]);
end
end
catch
% if method does not exist for this class calibrate a new regression
if ( Debug )
disp(['Calibrating ' Def_Base.Algorithm_Name '.' P ' for Class ' num2str(Class)]);
end
% add noise to the input data
Input_Noise=Add_Noise_Input(Def_Base,Input,Class);
%Determine convex hull of inputs used for this network
Results.(Def_Base.Algorithm_Name).Input_Convex_Hull = Get_Convex_Hull([Input.(['Rho_' Def_Base.Toc_Toa])],0.01,10);
%Determine coded defintion domain of inputs used for this network
Results.(Def_Base.Algorithm_Name).Input_Definition_Domain = Get_Definition_Domain([Input.(['Rho_' Def_Base.Toc_Toa])],(0:0.1:1));
% plot the noisy inputs amd outputs for this class and regression
% Plot_Matrix_InOut(Def_Base, Law, Input_Noise, Output,Class);
% check the regression method against available methods
switch Def_Base.Regression.(Def_Base.Algorithm_Name).Method
% method NNT selected
case {'NNT'}
% Check if single or cacsading regression
if ( strcmp(P,'Single') )
%% calibrate single regression
[Results.(Def_Base.Algorithm_Name).(P),Perf_Theo.(Def_Base.Algorithm_Name).(P)]= Train_NNT_Sim_batch([Def_Base.Var_out],Input_Noise,Output,Regression,Input.Cats,Def_Base.Regression.(Def_Base.Algorithm_Name).Num_Batches,100000,[1 99]);
else
% calibrate cascading regression
[Results.(Def_Base.Algorithm_Name).Single,Perf_Theo.(Def_Base.Algorithm_Name).Single]= Train_NNT_Sim_batch({P},Input_Noise,Output,Regression,Input.Cats,Def_Base.Regression.(Def_Base.Algorithm_Name).Num_Batches,100000,[1 99]);
[Pest] = Predict_NNT_Sim_batch( {P},Input_Noise, Results.(Def_Base.Algorithm_Name).Single,Input.Cats,unique(Input.Cats),[],[])';
Input_Noise.P = Pest.(P);
% use constant intervals to determine subsets of P
Plist = [0.1:0.05:0.9, 1.2 ];
Results.(Def_Base.Algorithm_Name).Plist = Plist;
[Results.(Def_Base.Algorithm_Name).(P),Perf_Theo.(Def_Base.Algorithm_Name).(P)]= Train_NNT_Sim_batch_P([Def_Base.Var_out], Input_Noise,Output,Regression,Input.Cats,Def_Base.Regression.(Def_Base.Algorithm_Name).Num_Batches,Results.(Def_Base.Algorithm_Name).Plist);
end
otherwise
if ( Debug )
disp('Invalid Regression');
end
status = 0;
return
end
% save the resulting performance
try
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Perf_Theo','-append' );
catch
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Perf_Theo' );
end
% save the resulting calibrated regression
try
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Results','-append' );
catch
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Results' );
end
end
%% perform cross validation
try
% load in cross validation database
load(fullfile([Def_Base.Validation_Dir '\Class_' num2str(Class)],[char(Def_Base.Validation_Name) '_inout.mat']),'-mat','Input');
load(fullfile([Def_Base.Validation_Dir '\Class_' num2str(Class)],[char(Def_Base.Validation_Name) '_inout.mat']),'-mat','Output');
% add noise to the input validation data
Input_Noise=Add_Noise_Input(Def_Base,Input,Class);
% do validation and plot results, calibrate incertitude predictions
% try to load results from other validation
try
load(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','ResultsActual');
load(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Perf_Actual');
load(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','ResultsIncertitudes');
load(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Perf_Incertitudes');
if ( isempty(ResultsActual ) || isempty( Perf_Actual ) || isempty( ResultsIncertitudes) || isempty( Perf_Incertitudes ) )
% force error to make the database
ME = MException('MyComponent:noSuchVariable', ...
'Variable %s not found', inputstr);
throw(MException('Dummy'));
end
catch
ResultsActual = [];
Perf_Actual = [];
ResultsIncertitudes = [];
Perf_Incertitudes = [];
end
% determine input out of range flag
[ResultsActual.(Def_Base.Algorithm_Name).(Def_Base.Validation_Name).flag]=input_out_of_range_flag_function(Input_Noise.(['Rho_' Def_Base.Toc_Toa]), Results.(Def_Base.Algorithm_Name).Input_Convex_Hull);
% validate and plot results
[ResultsActual.(Def_Base.Algorithm_Name).(Def_Base.Validation_Name),Perf_Actual.(Def_Base.Algorithm_Name).(Def_Base.Validation_Name)]= Validate( [Def_Base.Var_out],Input_Noise,Output,Results.(Def_Base.Algorithm_Name),P,Def_Base.Regression.(Def_Base.Algorithm_Name).Method);
Plot_Perfo_Theo(Def_Base,ResultsActual.(Def_Base.Algorithm_Name).(Def_Base.Validation_Name),Perf_Actual.(Def_Base.Algorithm_Name).(Def_Base.Validation_Name),Class,[Def_Base.Algorithm_Name '-' Def_Base.Algorithm_Name '-' Def_Base.Validation_Name '_' P],'');
% calibrate and plot regressions for incertitudes based on the validation results
% estimate rmse for sims sharing same inputs
Bruit_Angles.AD = ([ 0 0 0 ])';
Bruit_Angles.AI = ([ 10 10 10 ] *pi/180)';
Bruit_Angles.MD = ([ 0 0 0 ])';
Bruit_Angles.MI = ([ 0 0 0 ])';
[RMSE] = getRMSE( Def_Base.Bruit_Bandes , Bruit_Angles, Perf_Actual.(Def_Base.Algorithm_Name).(Def_Base.Validation_Name), Def_Base.Toc_Toa );
% calibrate regression for each incertitude and plot results
Cats = 1:length(Input.Angles);
[ResultsIncertitudes.(Def_Base.Algorithm_Name).(Def_Base.Validation_Name),Perf_Incertitudes.(Def_Base.Algorithm_Name).(Def_Base.Validation_Name)]= Train_NNT_Sim_batch([Def_Base.Var_out],Input_Noise,RMSE,Regression,Cats,5,Def_Base.Max_Sims,[0 100]);
Plot_Perfo_Theo(Def_Base,ResultsIncertitudes.(Def_Base.Algorithm_Name).(Def_Base.Validation_Name),Perf_Incertitudes.(Def_Base.Algorithm_Name).(Def_Base.Validation_Name),Class,[Def_Base.Algorithm_Name '-' Def_Base.Algorithm_Name '-' Def_Base.Validation_Name '_Errors' ],'');
% save cross validation
try
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','ResultsActual','-append');
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Perf_Actual','-append');
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','ResultsIncertitudes','-append');
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Perf_Incertitudes','-append');
catch
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','ResultsActual');
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Perf_Actual');
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','ResultsIncertitudes');
save(fullfile([Def_Base.Report_Dir '\Class_' num2str(Class)],[char(Def_Base.Name) '.mat']),'-mat','Perf_Incertitudes');
end
if (Debug )
disp(['Class_' num2str(Class) ' cross validated']);
end
catch
if (Debug )
disp(['Class_' num2str(Class) ' not cross validated']);
end
end
catch
if (Debug)
disp(['Class_' num2str(Class) ' created. No regression algorithm selected.']);
end
end
end
toc