forked from ACCA-Imperial/SKPrime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.m
101 lines (77 loc) · 2.49 KB
/
example.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
%% Prime function usage example.
% Everett Kropf, 2015
%
% This file is part of SKPrime.
%
% SKPrime is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% SKPrime is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with SKPrime. If not, see <http://www.gnu.org/licenses/>.
% test commit
clear
%% Create a bounded circular domain and pick a parameter point.
dv = [0.0524476+0.365385i; -0.27972-0.127622i; 0.482517-0.281469i];
qv = [0.151967; 0.179551; 0.209557];
m = numel(dv);
alpha = -0.5i;
%% Compute the prime function (and its square).
% Note X is just the square of w, but using |X| skips some root branch
% checking done when evaluating the prime function.
w = skprime(alpha, dv, qv);
X = @(z) w.X(z);
%% Evalutate the functions at various points.
np = 10;
zp = complex(nan(np, m));
for j = 1:m
zp(:,j) = dv(j) + 1.2*qv(j)*exp(2i*pi*(0:np-1)'/np);
end
zp = [zp, 1./conj(zp)];
wp = w(zp);
Xp = X(zp);
%% Make a complex potential.
% Note that calling the |invParam| method (from the |skprime| class) is
% equivalent to calling
%
% w2 = skprime(1/conj(alpha), w);
%
% where using the previous instance of |skprime| accelerates the
% construction of the next (e.g., the first-kind integral functions do not
% need to be recomputed). Both methods are faster than calling
%
% w2 = skprime(1/conj(alpha), dv, qv);
wi = invParam(w);
W = @(z) log(w(z)./(abs(alpha)*wi(z)))/(2i*pi);
Wp = W(zp);
%%
% Slightly more complicated potential; sum of 2 logarithmic singularities.
a2 = 0.50789+0.29737i;
w2 = skprime(a2, w);
w2i = invParam(w2);
W2 = @(z) W(z) + log(w2(z)./(abs(a2)*w2i(z)))/(2i*pi);
%%
% Plot some equipotential lines.
% Grid points in domain.
[X, Y] = meshgrid(linspace(-1, 1, 200));
zg = complex(X, Y);
zg(abs(zg) >= 1-eps(2)) = nan;
for j = 1:m
zg(abs(zg - dv(j)) < qv(j)+eps(2)) = nan;
end
% Boundary points.
zb = exp(2i*pi*(0:200)'/200);
zb = bsxfun(@plus, [0; dv].', bsxfun(@times, [1; qv]', zb));
clf
contour(real(zg), imag(zg), imag(W2(zg)), 20, 'color', lines(1))
hold on
plot(zb, 'k-', 'linewidth', 1.5)
hold off
set(gca, 'dataaspectratio', [1, 1, 1])
axis off