-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathevaluation.py
206 lines (166 loc) · 5.79 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
import json
import os
import torch
from peft import PeftConfig, PeftModel
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from aria.lora.layers import GroupedGemmLoraLayer
from aria.model import AriaForConditionalGeneration, AriaProcessor, GroupedGEMM
# Add command-line argument parsing
parser = argparse.ArgumentParser(description="NLVR2 Evaluation")
parser.add_argument(
"--base_model_path", type=str, required=True, help="Path to the base model"
)
parser.add_argument(
"--peft_model_path", type=str, default=None, help="Path to the PEFT model"
)
parser.add_argument(
"--tokenizer_path", type=str, required=True, help="Path to the tokenizer"
)
parser.add_argument(
"--save_root", type=str, required=True, help="The root path of output."
)
parser.add_argument("--image_size", type=int, default=980, help="Maximum image size")
parser.add_argument(
"--batch_size", type=int, default=16, help="Batch size for evaluation"
)
parser.add_argument(
"--num_workers", type=int, default=16, help="Number of workers for data loading"
)
args = parser.parse_args()
os.makedirs(args.save_root, exist_ok=True)
class NLVR2ValDataset(Dataset):
def __init__(self):
super().__init__()
annos = "datasets/nlvr2/val.jsonl"
vis_root = "datasets/nlvr2"
self.dataset = []
lines = open(annos).readlines()
for line in tqdm(lines):
anno = json.loads(line.strip())
anno["images"] = [
os.path.join(vis_root, im_path) for im_path in anno["images"]
]
self.dataset.append(anno)
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def load_model_and_tokenizer(args):
processor = AriaProcessor.from_pretrained(
args.base_model_path, tokenizer_path=args.tokenizer_path
)
processor.tokenizer.padding_side = "left"
tokenizer = processor.tokenizer
model = AriaForConditionalGeneration.from_pretrained(
args.base_model_path, device_map="auto", torch_dtype=torch.bfloat16
).eval()
model.pad_token_id = tokenizer.pad_token_id
if args.peft_model_path:
peft_config = PeftConfig.from_pretrained(args.peft_model_path)
custom_module_mapping = {GroupedGEMM: GroupedGemmLoraLayer}
peft_config._register_custom_module(custom_module_mapping)
model = PeftModel.from_pretrained(
model,
args.peft_model_path,
config=peft_config,
is_trainable=False,
autocast_adapter_dtype=False,
)
return model, tokenizer, processor
def process_batch(model, tokenizer, inputs, original_batch, prompts):
inputs = {k: v.to(model.device) for k, v in inputs.items()}
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
output = model.generate(
**inputs,
max_new_tokens=50,
stop_strings=["<|im_end|>"],
tokenizer=tokenizer,
)
for i, prompt in enumerate(prompts):
prompt_len = len(inputs["input_ids"][i])
output_text = tokenizer.decode(
output[i][prompt_len:], skip_special_tokens=True
).replace("<|im_end|>", "")
original_batch[i]["pred"] = output_text
return original_batch
def collate_fn(batch, processor, tokenizer):
messages = []
images = []
for item in batch:
images.extend(
[Image.open(im_path).convert("RGB") for im_path in item["images"]]
)
messages.append(item["messages"])
texts = [
processor.apply_chat_template(msg, add_generation_prompt=True)
for msg in messages
]
inputs = processor(
text=texts,
images=images,
return_tensors="pt",
padding="longest",
max_image_size=args.image_size,
)
return inputs, batch, texts
def main():
model, tokenizer, processor = load_model_and_tokenizer(args)
dataset = NLVR2ValDataset()
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
collate_fn=lambda batch: collate_fn(batch, processor, tokenizer),
)
results = []
for batch in tqdm(dataloader, desc="Processing batches"):
inputs, original_batch, prompts = batch
results.extend(process_batch(model, tokenizer, inputs, original_batch, prompts))
with open(f"{args.save_root}/nlvr2-dev_result.json", "w") as fo:
json.dump(results, fo, indent=4, ensure_ascii=False)
return results
def parse_pred_ans(pred_ans):
pred_ans = pred_ans.lower().strip().replace(".", "")
pred_label = None
if pred_ans in ["yes", "no"]:
pred_label = pred_ans
elif len(pred_ans) == 1:
if pred_ans == "y":
pred_label = "yes"
elif pred_ans == "n":
pred_label = "no"
else:
pred_label = "other"
else:
prefix_pred_ans = pred_ans[:4]
if "yes" in prefix_pred_ans:
pred_label = "yes"
elif "no" in prefix_pred_ans:
pred_label = "no"
else:
pred_label = "other"
return pred_label
def evaluate(result):
correct = total_cnt = 0
for output in result:
pred = output["pred"]
pred_ans = parse_pred_ans(pred)
gt = output["gt"]
gt_ans = gt.lower().strip().replace(".", "")
score = 1.0 if pred_ans == gt_ans else 0.0
correct += score
total_cnt += 1
acc = correct / total_cnt
if len(result) == 0:
return {"acc": 0}
return {"acc": acc * 100}
def get_score(output):
print(evaluate(output))
if __name__ == "__main__":
output = main()
get_score(output)